Approximating Multi-Dimensional Hamiltonian Flows by Billiards

被引:0
|
作者
A. Rapoport
V. Rom-Kedar
D. Turaev
机构
[1] Weizmann Institute of Science,Computer Science and Applied Mathematics
[2] Ben-Gurion University,Department of Mathematics
来源
Communications in Mathematical Physics | 2007年 / 272卷
关键词
Unstable Manifold; Homoclinic Orbit; Picard Iteration; Smooth Trajectory; Billiard Trajectory;
D O I
暂无
中图分类号
学科分类号
摘要
The behavior of a point particle traveling with a constant speed in a region \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D\subset R^{N}$$\end{document} , undergoing elastic collisions at the regions’s boundary, is known as the billiard problem. Various billiard models serve as approximation to the classical and semi-classical motion in systems with steep potentials (e.g. for studying classical molecular dynamics, cold atom’s motion in dark optical traps and microwave dynamics). Here we develop methodologies for examining the validity and accuracy of this approximation. We consider families of smooth potentials \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_\epsilon$$\end{document} , that, in the limit \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon\rightarrow0$$\end{document} , become singular hard-wall potentials of multi-dimensional billiards. We define auxiliary billiard domains that asymptote, as \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon\rightarrow0$$\end{document} to the original billiards, and provide, for regular trajectories, asymptotic expansion of the smooth Hamiltonian solution in terms of these billiard approximations. The asymptotic expansion includes error estimates in the Cr norm and an iteration scheme for improving this approximation. Applying this theory to smooth potentials that limit to the multi-dimensional close to ellipsoidal billiards, we predict when the billiard’s separatrix splitting (which appears, for example, in the nearly flat and nearly oblate ellipsoids) persists for various types of potentials.
引用
收藏
页码:567 / 600
页数:33
相关论文
共 50 条
  • [1] Approximating multi-dimensional hamiltonian flows by billiards
    Rapoport, A.
    Rom-Kedar, V.
    Turaev, D.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (03) : 567 - 600
  • [2] Hyperbolicity in multi-dimensional Hamiltonian systems with applications to soft billiards
    Bálint, P
    Tóth, IP
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2006, 15 (01) : 37 - 59
  • [3] Geometry of multi-dimensional dispersing billiards
    Bálint, P
    Chernov, N
    Szász, D
    Tóth, IP
    ASTERISQUE, 2003, (286) : 119 - 150
  • [4] Approximating Multi-Dimensional and Multiband Signals
    Li, Yuhan
    Huang, Tianyao
    Wang, Lei
    Liu, Yimin
    Wang, Xiqin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2025, 73 : 954 - 969
  • [5] Exponential Decay of Correlations in Multi-Dimensional Dispersing Billiards
    Péter Bálint
    Imre Péter Tóth
    Annales Henri Poincaré, 2008, 9 : 1309 - 1369
  • [6] Hamiltonian approach to multi-dimensional screening
    Basov, S
    JOURNAL OF MATHEMATICAL ECONOMICS, 2001, 36 (01) : 77 - 94
  • [7] Exponential Decay of Correlations in Multi-Dimensional Dispersing Billiards
    Balint, Peter
    Toth, Imre Peter
    ANNALES HENRI POINCARE, 2008, 9 (07): : 1309 - 1369
  • [8] On three-periodic trajectories of multi-dimensional dual billiards
    Tabachnikov, Serge
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2003, 3 (02): : 993 - 1004
  • [9] The multi-dimensional Hamiltonian structures in the Whitham method
    Maltsev, A. Ya.
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (05)
  • [10] Approximating tunneling rates in multi-dimensional field spaces
    Masoumi, Ali
    Olum, Ken D.
    Wachter, Jeremy M.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2017, (10):