The critical groups of a family of graphs and elliptic curves over finite fields

被引:0
作者
Gregg Musiker
机构
[1] Massachusetts Institute of Technology,Mathematics Department
来源
Journal of Algebraic Combinatorics | 2009年 / 30卷
关键词
Elliptic curves; Critical group; Graph Laplacian; Frobenius map;
D O I
暂无
中图分类号
学科分类号
摘要
Let q be a power of a prime, and E be an elliptic curve defined over  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_{q}$\end{document} . Such curves have a classical group structure, and one can form an infinite tower of groups by considering E over field extensions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_{q^{k}}$\end{document} for all k≥1. The critical group of a graph may be defined as the cokernel of L(G), the Laplacian matrix of G. In this paper, we compare elliptic curve groups with the critical groups of a certain family of graphs. This collection of critical groups also decomposes into towers of subgroups, and we highlight additional comparisons by using the Frobenius map of E over  \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{F}_{q}$\end{document} .
引用
收藏
页码:255 / 276
页数:21
相关论文
共 11 条
  • [1] Baker M.(2007)Riemann-Roch and Abel-Jacobi Theory on a Finite Graph Adv. Math. 215 766-788
  • [2] Norine S.(1999)Chip-firing and the critical group of a graph J. Algebr. Comb. 9 22-45
  • [3] Biggs N.L.(1990)Self-organized critical state of sandpile automaton models Phys. Rev. Lett. 64 1613-1616
  • [4] Dhar D.(1993)Abelian avalanches and Tutte polynomials Physica A 195 253-274
  • [5] Gabrielov A.(1996)Complex multiplication structure of elliptic curves J. Number Theory 56 227-241
  • [6] Lenstra H.W.(1991)On a finite group associated to the Laplacian of a graph Discr. Math. 91 277-282
  • [7] Lorenzini D.(2004)Trees, parking functions, syzygies, and deformations of monomial ideals Trans. Amer. Math. Soc. 356 3109-3142
  • [8] Postnikov A.(1960)Fibonacci series modulo  Amer. Math. Monthly 67 525-532
  • [9] Shapiro B.(2001)Group structure of elliptic curves over finite fields J. of Number Theory 88 335-344
  • [10] Wall D.D.(undefined)undefined undefined undefined undefined-undefined