Nψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\psi }$$\end{document}-Type Quotient Modules in H2(Dn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}({\mathbb {D}}^{n})$$\end{document}

被引:0
作者
Anjian Xu
机构
[1] Chongqing University of Technology,College of Mathematical Sciences and Statistics
关键词
Quotient modules; Commutators; Hilbert–Schmidt; Trace; 47B35; 46B32; 05A38; 15A15;
D O I
10.1007/s41980-021-00640-5
中图分类号
学科分类号
摘要
In this paper, Nψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N_{\psi }$$\end{document}-type quotient modules H2(Tn)/K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^{2}({\mathbb {T}}^{n})/{\mathcal {K}}$$\end{document} of the Hardy module on polydisc are defined, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}$$\end{document} is the submodule generated by {z1-ψ(zk),2≤k≤n}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{z_{1}-\psi (z_{k}),2\le k\le n\}$$\end{document} for a finite Blaschke product. Alternative characterizations are given and an orthonormal basis is constructed. Then we show that the self-commutators and cross-commutators are in trace class, self-commutators are Hilbert–Schmidt. Moreover, the traces and the Hilbert–Schmidt norms are given, respectively.
引用
收藏
页码:2173 / 2190
页数:17
相关论文
共 35 条
[1]  
Arazy J(1990)An identity for reproducing kernels in a planar domain and Hilbert–Schmidt Hankel operators J. Reine Angew. Math. 406 179-199
[2]  
Fisher SD(1973)Selfcommutators of multicyclic hyponormal operators are always trace class Bull. Am. Math. Soc. 79 1193-1199
[3]  
Janson S(2010)Quotient modules for some Hilbert modules over the bidisk J. Math. Anal. Appl. 366 486-493
[4]  
Peetre J(2000)Operator theory in the Hardy space over the bidisk. I Integral Equ. Oper. Theory 38 207-221
[5]  
Berger CA(1997)The Berger–Shaw theorem for cyclic subnormal operators Indiana Univ. Math. J. 46 741-751
[6]  
Shaw BI(2012)Trace formulas and p-essentially normal properties of quotient modules on the bidisk J. Oper. Theory 67 511-535
[7]  
Duan Y(2010)Wandering subspaces and the Beurling type theorem II N. Y. J. Math. 16 489-505
[8]  
Douglas RG(2004)Strictly contractive compression on backward shift invariant subspaces over the torus Acta Sci. Math. (Szeged) 70 147-165
[9]  
Yang R(2008)-type quotient modules on the torus N. Y. J. Math. 14 431-457
[10]  
Feldman NS(2018)Hilbert–Schmidtness of some finitely generated submodules in J. Math. Anal. Appl. 465 531-546