Improving prediction of missing rainfall data by identifying best Artificial Neural Network model

被引:0
作者
Gyani Ram Kumawat
Priyamitra Munoth
Rohit Goyal
机构
[1] Malaviya National Institute of Technology Jaipur,Department of Civil Engineering
来源
Journal of Earth System Science | / 132卷
关键词
ANN; basin; model; rainfall;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 76 条
[1]  
Ahrens B(2006)Distance in spatial interpolation of daily rain gauge data Hydrol. Earth Syst. Sci. 10 197-208
[2]  
Bustami R(2007)Artificial neural network for precipitation and water level prediction of bed up river Int. J. Comp. Sci. 34 228-233
[3]  
Bessaih N(2008)A novel approach to precipitation series completion in climatological datasets: Application to Andalusia Int. J. Climatol. 28 1525-1534
[4]  
Bong Charles HJ(2006)The parameter optimization in the inverse distance method by genetic algorithm for estimating precipitation Environ. Monit. Assess 117 145-155
[5]  
Sushila S(2020)ResLap: Generating high-resolution climate prediction through image super-resolution IEEE Access 8 39,623-39,634
[6]  
Calzado PR(2019)Missing rainfall data estimation using artificial neural network and nearest neighbor imputation Front. Artif. Intell. Appl. 318 132-143
[7]  
Camacho JG(2021)Assessment and prediction of groundwater using geospatial and ANN modeling Water Resour. Manag. 35 2879-2893
[8]  
Bernal FP(1994)Where and why artificial neural networks are applicable in Civil Engineering Editorial J. Comput. Civil Eng. 8 129-130
[9]  
Lopez MFP(2006)Climate change hot-spots Geophys. Res. Lett. 33 L08707-65
[10]  
Chang CL(2012)Extended modified inverse distance method for interpolation rainfall Int. J. Eng. Invent. 1 57-143