Group testing in graphs

被引:0
|
作者
Justie Su-tzu Juan
Gerard J. Chang
机构
[1] National Chi Nan University,Department of Computer Science and Information Engineering
[2] Puli,Department of Mathematics
[3] National Taiwan University,undefined
来源
Journal of Combinatorial Optimization | 2007年 / 14卷
关键词
Group testing; Graph; Bipartite graph; Sample space; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset X⊆V and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2e(G)⌉≤t(G)≤⌈log 2e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-6}+19\cdot 2^{\frac{k-7}{2}}$\end{document} for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-4}+2^{k-5}+2^{k-6}+2^{k-7}+27\cdot 2^{\frac{k-8}{2}}-1$\end{document} for k≥6.
引用
收藏
页码:113 / 119
页数:6
相关论文
共 50 条
  • [41] Effects of Group Size on the MLE of Proportion in Group Testing
    Mi, Jie
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2021, 60 (02): : 1 - 17
  • [42] Nested Group Testing Procedure
    Wenjun Xiong
    Juan Ding
    Wei Zhang
    Aiyi Liu
    Qizhai Li
    Communications in Mathematics and Statistics, 2023, 11 : 663 - 693
  • [43] Group Testing With Nested Pools
    Armendariz, Ines
    Ferrari, Pablo A.
    Fraiman, Daniel
    Mario Martinez, Jose
    Ponce Dawson, Silvina
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (02) : 1119 - 1132
  • [44] Group testing for image compression
    Hong, ES
    Ladner, RE
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11 (08) : 901 - 911
  • [45] A class of asymptotically optimal group testing strategies to identify good items
    Cheng, Yongxi
    Yang, Yunyue
    Du, Ding-Zhu
    DISCRETE APPLIED MATHEMATICS, 2019, 260 : 109 - 116
  • [46] Distinguishing labellings of group action on vector spaces and graphs
    Klavzar, Sandi
    Wong, Tsai-Lien
    Zhu, Xuding
    JOURNAL OF ALGEBRA, 2006, 303 (02) : 626 - 641
  • [47] Individual Testing Is Optimal for Nonadaptive Group Testing in the Linear Regime
    Aldridge, Matthew
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (04) : 2058 - 2061
  • [48] Group path covering and distance two labeling of graphs
    Wang, Feng
    Lin, Wensong
    INFORMATION PROCESSING LETTERS, 2011, 111 (13) : 621 - 625
  • [49] Group testing procedures with incomplete identification and unreliable testing results
    Bar-Lev, Shaul K.
    Stadje, Wolfgang
    van der duyn Schouten, Frank A.
    APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2006, 22 (03) : 281 - 296
  • [50] Group connectivity of graphs satisfying the Chvatal-condition
    Yang, Na
    Yin, Jian-Hua
    DISCRETE APPLIED MATHEMATICS, 2023, 341 : 212 - 217