Group testing in graphs

被引:0
|
作者
Justie Su-tzu Juan
Gerard J. Chang
机构
[1] National Chi Nan University,Department of Computer Science and Information Engineering
[2] Puli,Department of Mathematics
[3] National Taiwan University,undefined
来源
Journal of Combinatorial Optimization | 2007年 / 14卷
关键词
Group testing; Graph; Bipartite graph; Sample space; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset X⊆V and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2e(G)⌉≤t(G)≤⌈log 2e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-6}+19\cdot 2^{\frac{k-7}{2}}$\end{document} for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-4}+2^{k-5}+2^{k-6}+2^{k-7}+27\cdot 2^{\frac{k-8}{2}}-1$\end{document} for k≥6.
引用
收藏
页码:113 / 119
页数:6
相关论文
共 50 条
  • [31] Graphs admitting transitive commutative group actions
    Mai, Jiehua
    Shi, Enhui
    TOPOLOGY AND ITS APPLICATIONS, 2010, 157 (16) : 2462 - 2466
  • [32] Optimal Nested Test Plan for Combinatorial Quantitative Group Testing
    Wang, Chao
    Zhao, Qing
    Chuah, Chen-Nee
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (04) : 992 - 1006
  • [33] Identifying defective network components through restricted group testing
    Ghosh, Diptesh
    OPSEARCH, 2019, 56 (03) : 869 - 889
  • [34] Symmetric group testing with noise
    Egorova, Elena
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 99 - 103
  • [35] Group testing in mediation analysis
    Derkach, Andriy
    Moore, Steven C.
    Boca, Simina M.
    Sampson, Joshua N.
    STATISTICS IN MEDICINE, 2020, 39 (18) : 2423 - 2436
  • [36] Nested Group Testing Procedure
    Xiong, Wenjun
    Ding, Juan
    Zhang, Wei
    Liu, Aiyi
    Li, Qizhai
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2023, 11 (04) : 663 - 693
  • [37] Note on a conjecture for group testing
    Leu, MG
    Lin, CY
    Weng, SY
    ARS COMBINATORIA, 2002, 64 : 29 - 32
  • [38] ON COMPETITIVE GROUP-TESTING
    DU, DZ
    PARK, HS
    SIAM JOURNAL ON COMPUTING, 1994, 23 (05) : 1019 - 1025
  • [39] Group testing: Revisiting the ideas
    Skorniakov, Viktor
    Leipus, Remigijus
    Juzeliunas, Gediminas
    Staliunas, Kestutis
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2021, 26 (03): : 534 - 549
  • [40] Sparse Combinatorial Group Testing
    Inan, Huseyin A.
    Kairouz, Peter
    Ozgur, Ayfer
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (05) : 2729 - 2742