Group testing in graphs

被引:0
|
作者
Justie Su-tzu Juan
Gerard J. Chang
机构
[1] National Chi Nan University,Department of Computer Science and Information Engineering
[2] Puli,Department of Mathematics
[3] National Taiwan University,undefined
来源
Journal of Combinatorial Optimization | 2007年 / 14卷
关键词
Group testing; Graph; Bipartite graph; Sample space; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset X⊆V and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2e(G)⌉≤t(G)≤⌈log 2e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-6}+19\cdot 2^{\frac{k-7}{2}}$\end{document} for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-4}+2^{k-5}+2^{k-6}+2^{k-7}+27\cdot 2^{\frac{k-8}{2}}-1$\end{document} for k≥6.
引用
收藏
页码:113 / 119
页数:6
相关论文
共 50 条
  • [21] Smallest graphs with given automorphism group
    Danai Deligeorgaki
    Journal of Algebraic Combinatorics, 2022, 56 : 609 - 633
  • [22] Smallest graphs with given automorphism group
    Deligeorgaki, Danai
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (02) : 609 - 633
  • [23] Tropical Group Testing
    Wang, Hsin-Po
    Gabrys, Ryan
    Vardy, Alexander
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (09) : 6098 - 6120
  • [24] Group Testing Game
    Bolouki, Sadegh
    Manshaei, Mohammad Hossein
    Ravanmehr, Vida
    Nedic, Angelia
    Basar, Tamer
    IFAC PAPERSONLINE, 2017, 50 (01): : 9668 - 9673
  • [25] Blind Group Testing
    Huleihel, Wasim
    Elishco, Ohad
    Medard, Muriel
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 5050 - 5063
  • [26] Generalized Group Testing
    Cheng, Xiwei
    Jaggi, Sidharth
    Zhou, Qiaoqiao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (03) : 1413 - 1451
  • [27] Semiquantitative Group Testing
    Emad, Amin
    Milenkovic, Olgica
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (08) : 4614 - 4636
  • [28] Concomitant Group Testing
    Bui, Thach V.
    Scarlett, Jonathan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (10) : 7179 - 7192
  • [29] Isomorphism Testing for Graphs of Bounded Rank Width
    Grohe, Martin
    Schweitzer, Pascal
    2015 IEEE 56TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2015, : 1010 - 1029
  • [30] A NOTE ON THE HU-HWANG-WANG CONJECTURE FOR GROUP TESTING
    Leu, Ming-Guang
    ANZIAM JOURNAL, 2008, 49 (04) : 561 - 571