机构:National Chi Nan University,Department of Computer Science and Information Engineering
Justie Su-tzu Juan
Gerard J. Chang
论文数: 0引用数: 0
h-index: 0
机构:National Chi Nan University,Department of Computer Science and Information Engineering
Gerard J. Chang
机构:
[1] National Chi Nan University,Department of Computer Science and Information Engineering
[2] Puli,Department of Mathematics
[3] National Taiwan University,undefined
来源:
Journal of Combinatorial Optimization
|
2007年
/
14卷
关键词:
Group testing;
Graph;
Bipartite graph;
Sample space;
Algorithm;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset X⊆V and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2e(G)⌉≤t(G)≤⌈log 2e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-6}+19\cdot 2^{\frac{k-7}{2}}$\end{document}
for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-4}+2^{k-5}+2^{k-6}+2^{k-7}+27\cdot 2^{\frac{k-8}{2}}-1$\end{document}
for k≥6.