Group testing in graphs

被引:0
|
作者
Justie Su-tzu Juan
Gerard J. Chang
机构
[1] National Chi Nan University,Department of Computer Science and Information Engineering
[2] Puli,Department of Mathematics
[3] National Taiwan University,undefined
来源
Journal of Combinatorial Optimization | 2007年 / 14卷
关键词
Group testing; Graph; Bipartite graph; Sample space; Algorithm;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the group testing problem in graphs as follows. Given a graph G=(V,E), determine the minimum number t(G) such that t(G) tests are sufficient to identify an unknown edge e with each test specifies a subset X⊆V and answers whether the unknown edge e is in G[X] or not. Damaschke proved that ⌈log 2e(G)⌉≤t(G)≤⌈log 2e(G)⌉+1 for any graph G, where e(G) is the number of edges of G. While there are infinitely many complete graphs that attain the upper bound, it was conjectured by Chang and Hwang that the lower bound is attained by all bipartite graphs. Later, they proved that the conjecture is true for complete bipartite graphs. Chang and Juan verified the conjecture for bipartite graphs G with e(G)≤24 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-6}+19\cdot 2^{\frac{k-7}{2}}$\end{document} for k≥5. This paper proves the conjecture for bipartite graphs G with e(G)≤25 or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2^{k-1}<e(G)\le 2^{k-1}+2^{k-3}+2^{k-4}+2^{k-5}+2^{k-6}+2^{k-7}+27\cdot 2^{\frac{k-8}{2}}-1$\end{document} for k≥6.
引用
收藏
页码:113 / 119
页数:6
相关论文
共 50 条
  • [1] Group testing in graphs
    Juan, Justie Su-Tzu
    Chang, Gerard J.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (2-3) : 113 - 119
  • [2] Group testing in bipartite graphs
    Juan, ST
    Chang, GJ
    TAIWANESE JOURNAL OF MATHEMATICS, 2002, 6 (01): : 67 - 73
  • [3] Non-adaptive Group Testing on Graphs
    Kameli, Hamid
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (01)
  • [4] Nonadaptive Group Testing Based on Sparse Pooling Graphs
    Wadayama, Tadashi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (03) : 1525 - 1534
  • [5] A group testing problem for graphs with several defective edges
    Johann, P
    DISCRETE APPLIED MATHEMATICS, 2002, 117 (1-3) : 99 - 108
  • [6] Non-adaptive group testing on graphs with connectivity
    Luo, Song
    Matsuura, Yuji
    Miao, Ying
    Shigeno, Maiko
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (01) : 278 - 291
  • [7] Non-adaptive group testing on graphs with connectivity
    Song Luo
    Yuji Matsuura
    Ying Miao
    Maiko Shigeno
    Journal of Combinatorial Optimization, 2019, 38 : 278 - 291
  • [8] On testing Hamiltonicity of graphs
    Barvinok, Alexander
    DISCRETE MATHEMATICS, 2015, 338 (01) : 53 - 58
  • [9] Group extensions and graphs
    Ballester-Bolinches, A.
    Cosme-Llopez, E.
    Esteban-Romero, R.
    EXPOSITIONES MATHEMATICAE, 2016, 34 (03) : 327 - 334
  • [10] Nonadaptive Group Testing Based on Sparse Pooling Graphs (vol 63, pg 1525, 2017)
    Wadayama, Tadashi
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (06) : 4686 - 4686