A molecular dynamics simulation of energetics and diffusion of point defects in a Au–Ag alloy

被引:0
作者
Ru-song Li
Fei Li
Du-qiang Xin
Ji-jun Luo
Saifei Chen
Yu Zhang
机构
[1] Xijing University,
来源
Bulletin of Materials Science | 2019年 / 42卷
关键词
Radiation damage; point defects; formation energy; migration energy; molecular dynamics;
D O I
暂无
中图分类号
学科分类号
摘要
For revealing an aging mechanism for self-irradiation in a Pu–Ga alloy, we carried out a molecular dynamics (MD) simulation on a substitutional material, i.e., Au–Ag alloy. In this work, we estimate physical and microscopic properties of the Au–Ag alloy containing various point defects using a MD method, in particular, formation energy for point defects, migration energy for point defects diffusion into interstitial sites, and diffusion coefficient for the Au–Ag alloy containing point defects, such as vacancy, He atom and He-vacancy (He-V) cluster. The results indicate that volumetric heat capacity and linear expansion coefficient would decrease due to the various point defects, and He atom has the most remarkable influence on the physical properties of the Au–Ag alloy for point defects considered in this work. The formation energy of Au and Ag self-interstitial atom indicates that Octa1 is the most stable site, and structural stability of octahedral (Octa) interstitial sites for the He atom obeys Octa1>Octa2>Octa4>Octa3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {Octa1}> \hbox {Octa2}> \hbox {Octa4} > \hbox {Octa3}$$\end{document}. For the HenVm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {He}_{n}\hbox {V}_{m}$$\end{document} cluster, the formation energy of the defect structure is most stable at n=m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = m$$\end{document}. The diffusion coefficient of the He-V cluster is relatively smaller, showing that vacancy defects would further decrease atomic diffusion. An influence of various point defects on the diffusion velocity in the Au–Ag alloy obeys the He-V cluster>He>vacancy>Ag>Au\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {cluster}> \hbox {He}> \hbox {vacancy}> \hbox {Ag} > \hbox {Au}$$\end{document}.
引用
收藏
相关论文
共 92 条
  • [1] Baskes ML(2000)undefined Phys. Rev. B 62 15532-undefined
  • [2] Pochet P(2003)undefined Nucl. Instrum. Meth. B 202 82-undefined
  • [3] Ao BY(2007)undefined J. Alloys Compd. 444–445 300-undefined
  • [4] Wang XL(2012)undefined Commun. Comput. Phys. 11 1205-undefined
  • [5] Hu WY(2012)undefined J. Nucl. Mater. 423 16-undefined
  • [6] Yang JY(2013)undefined J. Nucl. Mater. 442 83-undefined
  • [7] Xia JX(2014)undefined J. Nucl. Mater. 444 493-undefined
  • [8] Ao BY(2017)undefined J. Nucl. Mater. 484 7-undefined
  • [9] Chen PH(2017)undefined J. Nucl. Mater. 496 85-undefined
  • [10] Shi P(2004)undefined J. Nucl. Mater. 324 41-undefined