Finite Gap Jacobi Matrices, II. The Szegő Class

被引:0
作者
Jacob S. Christiansen
Barry Simon
Maxim Zinchenko
机构
[1] University of Copenhagen,Department of Mathematical Sciences
[2] California Institute of Technology,Mathematics 253
来源
Constructive Approximation | 2011年 / 33卷
关键词
Isospectral torus; Szegő asymptotics; Orthogonal polynomials; 42C05; 58J53; 14H30;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frak{e}\subset\mathbb{R}$\end{document} be a finite union of disjoint closed intervals. We study measures whose essential support is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frak{e}}$\end{document} and whose discrete eigenvalues obey a 1/2-power condition. We show that a Szegő condition is equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup\frac{a_1\cdots a_n}{\mathrm{cap}(\frak{e})^n}>0$$\end{document} (this includes prior results of Widom and Peherstorfer–Yuditskii). Using Remling’s extension of the Denisov–Rakhmanov theorem and an analysis of Jost functions, we provide a new proof of Szegő asymptotics, including L2 asymptotics on the spectrum. We make heavy use of the covering map formalism of Sodin–Yuditskii as presented in our first paper in this series.
引用
收藏
页码:365 / 403
页数:38
相关论文
共 30 条
  • [11] Simon B.(1934)Théorie générale des polinomes orthogonaux de Tchebichef Mém. Sci. Math. 66 1-69
  • [12] Last Y.(2004)A canonical factorization for meromorphic Herglotz functions on the unit disk and sum rules for Jacobi matrices J. Funct. Anal. 214 396-409
  • [13] Simon B.(2005)OPUC on one foot Bull. Am. Math. Soc. 42 431-460
  • [14] Nevai P.(2007)Equilibrium measures and capacities in spectral theory Inverse Probl. Imaging 1 713-772
  • [15] Peherstorfer F.(2003)Sum rules and the Szegő condition for orthogonal polynomials on the real line Commun. Math. Phys. 242 393-423
  • [16] Yuditskii P.(1997)Almost periodic Jacobi matrices with homogeneous spectrum, infinite-dimensional Jacobi inversion, and Hardy spaces of character-automorphic functions J. Geom. Anal. 7 387-435
  • [17] Peherstorfer F.(1920)Beiträge zur Theorie der Toeplitzschen Formen Math. Z. 6 167-202
  • [18] Yuditskii P.(1921)Beiträge zur Theorie der Toeplitzschen Formen, II Math. Z. 9 167-190
  • [19] Shohat J.A.(1922)Über den asymptotischen Ausdruck von Polynomen, die durch eine Orthogonalitätseigenschaft definiert sind Math. Ann. 86 114-139
  • [20] Simon B.(1969)Extremal polynomials associated with a system of curves in the complex plane Adv. Math. 3 127-232