Finite Gap Jacobi Matrices, II. The Szegő Class

被引:0
作者
Jacob S. Christiansen
Barry Simon
Maxim Zinchenko
机构
[1] University of Copenhagen,Department of Mathematical Sciences
[2] California Institute of Technology,Mathematics 253
来源
Constructive Approximation | 2011年 / 33卷
关键词
Isospectral torus; Szegő asymptotics; Orthogonal polynomials; 42C05; 58J53; 14H30;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frak{e}\subset\mathbb{R}$\end{document} be a finite union of disjoint closed intervals. We study measures whose essential support is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\frak{e}}$\end{document} and whose discrete eigenvalues obey a 1/2-power condition. We show that a Szegő condition is equivalent to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup\frac{a_1\cdots a_n}{\mathrm{cap}(\frak{e})^n}>0$$\end{document} (this includes prior results of Widom and Peherstorfer–Yuditskii). Using Remling’s extension of the Denisov–Rakhmanov theorem and an analysis of Jost functions, we provide a new proof of Szegő asymptotics, including L2 asymptotics on the spectrum. We make heavy use of the covering map formalism of Sodin–Yuditskii as presented in our first paper in this series.
引用
收藏
页码:365 / 403
页数:38
相关论文
共 30 条
  • [1] Aptekarev A.I.(1986)Asymptotic properties of polynomials orthogonal on a system of contours, and periodic motions of Toda chains Math. USSR Sb. 53 233-260
  • [2] Damanik D.(2006)Jost functions and Jost solutions for Jacobi matrices, I. A necessary and sufficient condition for Szegő asymptotics Invent. Math. 165 1-50
  • [3] Simon B.(2004)On Rakhmanov’s theorem for Jacobi matrices Proc. Am. Math. Soc. 132 847-852
  • [4] Denisov S.A.(2008)Eigenvalue bounds for perturbations of Schrödinger operators and Jacobi matrices with regular ground states Commun. Math. Phys. 282 199-208
  • [5] Frank R.(2008)Eigenvalue bounds in the gaps of Schrödinger operators and Jacobi matrices J. Math. Anal. Appl. 340 892-900
  • [6] Simon B.(2003)Sum rules for Jacobi matrices and their applications to spectral theory Ann. Math. 158 253-321
  • [7] Weidl T.(2006)The essential spectrum of Schrödinger, Jacobi, and CMV operators J. Anal. Math. 98 183-220
  • [8] Hundertmark D.(1979)Orthogonal polynomials Mem. Am. Math. Soc. 18 1-183
  • [9] Simon B.(2001)Asymptotics of orthonormal polynomials in the presence of a denumerable set of mass points Proc. Am. Math. Soc. 129 3213-3220
  • [10] Killip R.(2003)Asymptotic behavior of polynomials orthonormal on a homogeneous set J. Anal. Math. 89 113-154