Optimal Control and Controllability of a Phase Field System with One Control Force

被引:0
作者
F. D. Araruna
J. L. Boldrini
B. M. R. Calsavara
机构
[1] Universidade Federal da Paraíba,Departamento de Matemática
[2] Universidade Estadual de Campinas,Instituto de Matemática, Estatística e Computação Científica
[3] Universidade Estadual de Campinas,Faculdade de Ciências Aplicadas
来源
Applied Mathematics & Optimization | 2014年 / 70卷
关键词
Phase field models; Solidification models; Optimal control; Controllability; 82B26; 49J20; 93B05;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate the relation between optimal control and controllability for a phase field system modeling the solidification process of pure materials in the case that only one control force is used. Such system is constituted of one energy balance equation, with a localized control associated to the density of heat sources and sinks to be determined, coupled with a phase field equation with the classical nonlinearity derived from the two-well potential. We prove that this system has a local controllability property and we establish that a sequence of solutions of certain optimal control problems converges to a solution of such controllability problem.
引用
收藏
页码:539 / 563
页数:24
相关论文
共 110 条
[41]  
Miranville A(2003)Global existence and asymptotic behaviour for a nonlocal phase-field model for non-isothermal phase transitions J. Math. Anal. Appl. 279 97-110
[42]  
Colli P(1992)Optimal control of a phase field model for solidification Numer. Funct. Anal. Optim. 13 11-27
[43]  
Grasselli M(2003)The optimal time control of a phase-field system SIAM J. Control Optim. 42 1483-1508
[44]  
Ito A(2002)Local controllability of the phase field system Nonlinear Anal. 50 363-372
[45]  
Gilardi G(2003)Controllability to the trajectories of phase-field models by one control force SIAM J. Control Optim. 42 1661-1680
[46]  
Marson A(2006)Controllability results for some nonlinear coupled parabolic systems by one control force Asymptot. Anal. 46 123-162
[47]  
Gilardi G(2001)Numerical approximations of exact controllability problems by optimal control problems for parabolic differential equations Appl. Math. Comput. 119 127-145
[48]  
Rocca E(1996)Exact controllability for semilinear parabolic equations with Neumann boundary conditions J. Dyn. Control Syst. 2 449-483
[49]  
Jiménez-Casas A(1995)Approximate controllability of the semilinear heat equation Proc. R. Soc. Edinb. 125 31-61
[50]  
Karma A(2002)On the controllability of parabolic systems with a nonlinear term involving the state and the gradient SIAM J. Control Optim. 41 798-819