On the Exponential Diophantine Equation (m2+m+1)x+my=(m+1)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(m^2+m+1)^x+m^y=(m+1)^z $$\end{document}

被引:0
|
作者
Murat Alan
机构
[1] Yildiz Technical University,Mathematics Department, Faculty of Arts and Sciences
关键词
Exponential Diophantine equations; -adic valuation; Primary 11D61; Secondary 11D75;
D O I
10.1007/s00009-020-01613-4
中图分类号
学科分类号
摘要
Let m≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \ge 1$$\end{document} be a positive integer. We show that the exponential Diophantine equation (m2+m+1)x+my=(m+1)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ (m^2+m+1)^x+m^y=(m+1)^z $$\end{document} has no positive integer solutions other than (x,y,z)=(1,1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x,y,z)=(1,1,2)$$\end{document} when m∉{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$m \not \in \{1, 2, 3 \}$$\end{document}.
引用
收藏
相关论文
共 5 条