共 31 条
On four codes with automorphism group PΣL(3,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\Sigma L(3,4)$$\end{document} and pseudo-embeddings of the large Witt designs
被引:0
|作者:
Bart De Bruyn
Mou Gao
机构:
[1] Ghent University,Department of Mathematics: Algebra and Geometry
关键词:
Witt design;
Mathieu group;
(homogeneous) Pseudo-embedding;
Even set;
Linear code;
Hyperoval;
Baer subplane;
51E20;
94B05;
05B05;
51A45;
20C20;
D O I:
10.1007/s10623-019-00690-1
中图分类号:
学科分类号:
摘要:
A pseudo-embedding of a point-line geometry is a representation of the geometry into a projective space over the field F2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb F}_2$$\end{document} such that every line corresponds to a frame of a subspace. Such a representation is called homogeneous if every automorphism of the geometry lifts to an automorphism of the projective space. In this paper, we determine all homogeneous pseudo-embeddings of the three Witt designs that arise by extending the projective plane PG(2,4)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{PG}}(2,4)$$\end{document}. Along our way, we come across some codes with automorphism group PΣL(3,4)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$P\Sigma L(3,4)$$\end{document} and sets of points of PG(2,4)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{PG}}(2,4)$$\end{document} that have a particular intersection pattern with Baer subplanes or hyperovals.
引用
收藏
页码:429 / 452
页数:23
相关论文