On four codes with automorphism group PΣL(3,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\Sigma L(3,4)$$\end{document} and pseudo-embeddings of the large Witt designs

被引:0
|
作者
Bart De Bruyn
Mou Gao
机构
[1] Ghent University,Department of Mathematics: Algebra and Geometry
关键词
Witt design; Mathieu group; (homogeneous) Pseudo-embedding; Even set; Linear code; Hyperoval; Baer subplane; 51E20; 94B05; 05B05; 51A45; 20C20;
D O I
10.1007/s10623-019-00690-1
中图分类号
学科分类号
摘要
A pseudo-embedding of a point-line geometry is a representation of the geometry into a projective space over the field F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb F}_2$$\end{document} such that every line corresponds to a frame of a subspace. Such a representation is called homogeneous if every automorphism of the geometry lifts to an automorphism of the projective space. In this paper, we determine all homogeneous pseudo-embeddings of the three Witt designs that arise by extending the projective plane PG(2,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PG}}(2,4)$$\end{document}. Along our way, we come across some codes with automorphism group PΣL(3,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P\Sigma L(3,4)$$\end{document} and sets of points of PG(2,4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathrm{PG}}(2,4)$$\end{document} that have a particular intersection pattern with Baer subplanes or hyperovals.
引用
收藏
页码:429 / 452
页数:23
相关论文
共 31 条