Homoclinic Orbits for second order Hamiltonian Equations in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{R}}$$\end{document}

被引:0
作者
Percy D. Makita
机构
[1] University of Giessen,Mathematical Institute
关键词
Homoclinic solution; Solution changing sign a prescribed number of times; Nehari manifold; 37J45; 35B45; 35J55;
D O I
10.1007/s10884-012-9275-0
中图分类号
学科分类号
摘要
We are concerned with the existence and multiplicity of homoclinic solutions for the second order Hamiltonian equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\ddot{u}+\omega(t)u=F_u(t,u) \quad t \in \mathbb{R}, \quad\quad\quad(1)$$\end{document}where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega \in \mathcal{C}(\mathbb{R})}$$\end{document} is positive and bounded, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${F\in \mathcal{C}^1(S^1\times\mathbb{R})}$$\end{document} . Under some growth condition on F, we prove that (1) admits at least two solutions which are homoclinic to zero and do not change sign. We also prove that for every integer k ≥  1, (1) possesses at least two solutions homoclinic to zero changing sign exactly k times, and for k ≥  2 these solutions have at least k and at most k + 2 zeros which are isolated, or ‘isolated from the left’, or ‘isolated from the from right’.
引用
收藏
页码:857 / 871
页数:14
相关论文
共 14 条
[1]  
Ambrosetti A.(1993)Multiple homoclinic orbits for a class of conservative systems Rend. Sem. Mat. Univ. Padova 89 177-194
[2]  
Coti Zelati V.(1973)Dual variational methods in critical point theory and applications J. Funct. Anal. 14 349-381
[3]  
Ambrosetti A.(1993)Infinitely many radial solutions of a semilinear elliptic problem on Arch. Ration. Mech. Anal 124 261-276
[4]  
Rabinowitz P.H.(1990)A variational approach to homoclinic orbits in Hamiltonian systems Math. Ann. 288 133-160
[5]  
Bartsch T.(1961)Characteristic values associated to a class of second-order differential equations Acta. Math. 105 141-175
[6]  
Willem M.(2001)Multiple homoclinic orbits for a class of Hamiltonian systems Calc. Var. Partial Diff. Equ. 12 117-143
[7]  
Coti Zelati V.(1992)Existence of infinitely many homoclinic orbits in Hamiltonian systems Math. Z 209 27-42
[8]  
Ekeland I.(1992)On a class of nonlinear Schrödinger equations Z. Angew. Math. Phys. 43 270-291
[9]  
Séré E.(1990)Homoclinic orbits for a class of Hamiltonian systems Proc. R. Soc. Edinb. Sect. A 114 33-38
[10]  
Nehari Z.(undefined)undefined undefined undefined undefined-undefined