Quantization, coherent states and geometric phases of a generalized nonstationary mesoscopic RLC circuit

被引:0
|
作者
Inácio A. Pedrosa
Jilvan L. Melo
Sadoque Salatiel
机构
[1] Universidade Federal da Paraíba,Departamento de Física, CCEN
来源
关键词
Mesoscopic and Nanoscale Systems;
D O I
暂无
中图分类号
学科分类号
摘要
We present an alternative quantum treatment for a generalized mesoscopic RLC circuit with time-dependent resistance, inductance and capacitance. Taking advantage of the Lewis and Riesenfeld quantum invariant method and using quadratic invariants we obtain exact nonstationary Schrödinger states for this electromagnetic oscillation system. Afterwards, we construct coherent and squeezed states for the quantized RLC circuit and employ them to investigate some of the system’s quantum properties, such as quantum fluctuations of the charge and the magnetic flux and the corresponding uncertainty product. In addition, we derive the geometric, dynamical and Berry phases for this nonstationary mesoscopic circuit. Finally we evaluate the dynamical and Berry phases for three special circuits. Surprisingly, we find identical expressions for the dynamical phase and the same formulae for the Berry’s phase.
引用
收藏
相关论文
共 36 条
  • [1] Quantization, coherent states and geometric phases of a generalized nonstationary mesoscopic RLC circuit
    Pedrosa, Inacio A.
    Melo, Jilvan L.
    Salatiel, Sadoque
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (11):
  • [2] Geometric phases for generalized squeezed coherent states
    Seshadri, S
    Lakshmibala, S
    Balakrishnan, V
    PHYSICAL REVIEW A, 1997, 55 (02): : 869 - 875
  • [4] Number-phase quantization of a mesoscopic RLC circuit
    胥成林
    Chinese Physics B, 2012, 21 (02) : 126 - 128
  • [5] Number-phase quantization of a mesoscopic RLC circuit
    Xu Cheng-Lin
    CHINESE PHYSICS B, 2012, 21 (02)
  • [6] Smooth loops, generalized coherent states, and geometric phases
    Nesterov, AI
    Sabinin, LV
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1997, 36 (09) : 1981 - 1989
  • [7] Smooth loops, generalized coherent states, and geometric phases
    Alexander I. Nesterov
    Lev V. Sabinin
    International Journal of Theoretical Physics, 1997, 36 : 1981 - 1989
  • [8] Coherent states in geometric quantization
    Kirwin, William D.
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) : 531 - 548
  • [9] Linear invariants and the quantum dynamics of a nonstationary mesoscopic RLC circuit with a source
    Pedrosa, I. A.
    Melo, J. L.
    Nogueira, E., Jr.
    MODERN PHYSICS LETTERS B, 2014, 28 (27):
  • [10] QUANTIZATION FOR THE MESOSCOPIC RLC CIRCUIT AND ITS THERMAL EFFECT BY VIRTUE OF GHFT
    Liang, Bao-Long
    Wang, Ji-Suo
    Meng, Xiang-Guo
    MODERN PHYSICS LETTERS B, 2009, 23 (30): : 3621 - 3630