Lie groups with flat Gauduchon connections

被引:1
作者
Luigi Vezzoni
Bo Yang
Fangyang Zheng
机构
[1] Universitȧ Di Torino,Dipartimento di Matematica G. Peano
[2] Xiamen University,School of Mathematical Sciences
[3] The Ohio State University,Department of Mathematics
来源
Mathematische Zeitschrift | 2019年 / 293卷
关键词
Hermitian manifolds; Lie groups; left-invariant metrics; Primary 53C55;
D O I
暂无
中图分类号
学科分类号
摘要
We pursue the research line proposed in Yang and Zheng (Acta. Math. Sinica (English Series), 34(8):1259–1268, 2018) about the classification of Hermitian manifolds whose s-Gauduchon connection ∇s=(1-s2)∇c+s2∇b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^s =(1-\frac{s}{2})\nabla ^c + \frac{s}{2}\nabla ^b$$\end{document} is flat, where s∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\in {\mathbb {R}}$$\end{document} and ∇c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^c$$\end{document} and ∇b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^b$$\end{document} are the Chern and the Bismut connections, respectively. We focus on Lie groups equipped with a left invariant Hermitian structure. Such spaces provide an important class of Hermitian manifolds in various contexts and are often a valuable vehicle for testing new phenomena in complex and Hermitian geometry. More precisely, we consider a connected 2n-dimensional Lie group G equipped with a left-invariant complex structure J and a left-invariant compatible metric g and we assume that its connection ∇s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^s$$\end{document} is flat. Our main result states that if either n=2 or there exits a ∇s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^s$$\end{document}-parallel left invariant frame on G, then g must be Kähler. This result demonstrates rigidity properties of some complete Hermitian manifolds with ∇s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla ^s$$\end{document}-flat Hermitian metrics.
引用
收藏
页码:597 / 608
页数:11
相关论文
共 27 条
  • [1] Andrada A(2012)Abelian Hermitian geometry Differ. Geom. Appl. 30 509-519
  • [2] Barberis ML(2006)Hyper-Kähler quotients of solvable Lie groups J. Geom. Phys. 56 691-711
  • [3] Dotti I(1989)A local index theorem for non-Kähler manifolds Math. Ann. 284 681-699
  • [4] Barberis ML(1958)Hermitian manifolds with zero curvature Mich. Math. J. 5 229-233
  • [5] Dotti I(2015)Invariant solutions to the Strominger system on complex Lie groups and their quotients Commun. Math. Phys. 338 1183-1195
  • [6] Fino A(1997)Hermitian connections and Dirac operators Boll. Un. Mat. Ital. B (7) 11 257-288
  • [7] Bismut J-M(2006)Hermitian manifolds with flat associated connections Kodai Math. J. 29 281-298
  • [8] Boothby W(1968)Flat connection with parallel torsion J. Differ. Geom. 2 385-389
  • [9] Fei T(2012)Geometry of Hermitian manifolds Int. J. Math. 23 40-329
  • [10] Yau ST(1976)Curvatures of left invariant metrics on Lie groups Adv. Math. 21 293-333