A Second Main Theorem for Holomorphic Maps into the Projective Space with Hypersurfaces

被引:0
作者
Lei Shi
Qiming Yan
机构
[1] Guizhou Normal University,School of Mathematical Sciences
[2] Tongji University,School of Mathematical Sciences
来源
The Journal of Geometric Analysis | 2022年 / 32卷
关键词
Nevanlinna theory; Hypersurface; Second main theorem; Subgeneral position; Schmidt’s subspace theorem; 32H30; 32H22; 11J97;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the study will focus on the hypersurfaces in the projective space located in subgeneral position. By considering the number of irreducible components of these hypersurfaces, a new second main theorem is established for algebraically non-degenerate holomorphic maps from C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}$$\end{document} into the projective space with truncated counting functions. Moreover, as the counterpart of this second main theorem, a Schmidt’s subspace type theorem in Diophantine approximation is also given for this case.
引用
收藏
相关论文
共 25 条
[1]  
Quang SD(2013)The second main theorem for meromorphic mappings into a complex projective space Acta Math. Vietnam. 38 187-205
[2]  
Thai DD(1972)A defect relation for equidimensional holomorphic mappings between algebraic varieties Ann. Math. 95 557-584
[3]  
Carlson J(1933)Sur les zeros des combinaisions linearires de Mathematica (Cluj). 7 80-103
[4]  
Griffiths P(2012) fonctions holomorpes donnees Sci. China. 55 1367-1380
[5]  
Cartan H(2004)The degenerated second main theorem and Schmidt’s subspace theorem Am. J. Math. 126 1033-1055
[6]  
Chen Z(2011)On a general Thue’s equation Int. J. Math. 22 863-885
[7]  
Ru M(1925)An extension of the Cartan-Nochka second main theorem for hypersurfaces Acta Math. 46 1-99
[8]  
Yan Q(1983)Zur theorie der meromorphen funktionen Soviet Math. Dokl. 27 377-381
[9]  
Corvaja P(2005)On the theory of meromorphic functions Kodai Mayh. J. 28 336-346
[10]  
Zannier U(2019)A note on entire pseudo-holomorphic curves and the proof of Cartan-Nochka’s theorem Trans. Am. Math. Soc. 371 2431-2453