Dilation properties of measurable Schur multipliers and Fourier multipliers

被引:0
作者
Charles Duquet
机构
[1] Université de Franche-Comté,Laboratoire de Mathématiques de Besançon
来源
Positivity | 2022年 / 26卷
关键词
Dilation; Schur multipliers; Fourier multipliers; Completely positive maps; Primary: 47A20 Secondary: 43A22; 47L65; 47B65;
D O I
暂无
中图分类号
学科分类号
摘要
In the article, we find new dilatation results on non-commutative Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document} spaces. We prove that any self-adjoint, unital, positive measurable Schur multiplier on some B(L2(Σ))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(L^2(\Sigma ))$$\end{document} admits, for all 1⩽p<∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1\leqslant p<\infty $$\end{document}, an invertible isometric dilation on some non-commutative Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^p$$\end{document}-space. We obtain a similar result for self-adjoint, unital, completely positive Fourier multiplier on VN(G), when G is a unimodular locally compact group. Furthermore, we establish multivariable versions of these results.
引用
收藏
相关论文
共 25 条
  • [1] Akcoglu MA(1977)Dilations of positive contractions on Canad. Math. Bull. 20 285-292
  • [2] Sucheston L(2013) spaces J. Operator Theory 69 387-421
  • [3] Arhancet C(2020)On Matsaev’s conjecture for contractions on noncommutative Proc. Amer. Math. Soc. 148 2551-2563
  • [4] Arhancet C(1981)-spaces Math. Ann. 258 11-15
  • [5] Bożejko M(1991)Dilations of Markovian semigroups of Fourier multipliers on locally compact groups Comm. Math. Phys. 137 519-531
  • [6] Bożejko M(1994)Remark on Herz-Schur multipliers on free groups Math. Ann. 300 97-120
  • [7] Speicher R(1975)An example of a generalized Brownian motion Izv. Vysš. Učebn. Zaved. Matematika 11 21-32
  • [8] Bożejko M(1976)Completely positive maps on Coxeter groups, deformed commutation relations, and operator spaces Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 65 5-16
  • [9] Speicher R(1985)The analytic representation of operators with an abstract norm [Russian] Amer. J. Math. 107 455-500
  • [10] Buhvalov AV(2003)Hardy spaces of vector-valued functions [Russian] Proc. Natl. Acad. Sci. U.S.A. 100 8629-8633