Maximum distance separable poset codes

被引:0
作者
Jong Yoon Hyun
Hyun Kwang Kim
机构
[1] Pohang University of Science and Technology,Department of Mathematics
来源
Designs, Codes and Cryptography | 2008年 / 48卷
关键词
Maximum distance separable code; Poset code; Discrete Poisson summation formula; Moebius inversion formula; 94B05; 94B25;
D O I
暂无
中图分类号
学科分类号
摘要
We derive the Singleton bound for poset codes and define the MDS poset codes as linear codes which attain the Singleton bound. In this paper, we study the basic properties of MDS poset codes. First, we introduce the concept of I-perfect codes and describe the MDS poset codes in terms of I-perfect codes. Next, we study the weight distribution of an MDS poset code and show that the weight distribution of an MDS poset code is completely determined. Finally, we prove the duality theorem which states that a linear code C is an MDS \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}}$$\end{document} -code if and only if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^\perp}$$\end{document} is an MDS \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{\mathbb{P}}}$$\end{document} -code, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${C^\perp}$$\end{document} is the dual code of C and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{\mathbb{P}}}$$\end{document} is the dual poset of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{P}.}$$\end{document}
引用
收藏
页码:247 / 261
页数:14
相关论文
共 16 条
  • [1] Ahn J.(2003)Classification of perfect linear codes with crown poset structure Discrete Math. 268 21-30
  • [2] Kim H.K.(1995)Codes with a poset metric Discrete Math. 147 57-72
  • [3] Kim J.S.(2002)Maximum distance separable codes in the ρ metric over arbitrary alphabets J. Algebraic Combin. 16 71-81
  • [4] Kim M.(2004)The poset structures admitting the extended binary Hamming code to be a perfect code Discrete Math. 288 37-47
  • [5] Brualdi R.A.(2005)A classification of posets admitting MacWilliams identity IEEE Trans. Inform. Theory 51 1424-1431
  • [6] Graves J.(1987)Point sets and sequences with small discrepancy Monatsh. Math. 104 273-337
  • [7] Lawrence K.M.(1991)A combinatorial problem for vector spaces over finite fields Discrete Math. 96 221-228
  • [8] Dougherty S.T.(1992)Orthogonal arrays and other combinatorial aspects in the theory of uniform point distributions in unit cubes Discrete Math. 106/107 361-367
  • [9] Skriganov M.M.(undefined)undefined undefined undefined undefined-undefined
  • [10] Hyun J.Y.(undefined)undefined undefined undefined undefined-undefined