Weighted pseudo almost automorphic classical solutions and optimal mild solutions for fractional differential equations and application in fractional reaction–diffusion equations

被引:0
作者
Junfei Cao
Zaitang Huang
Caibin Zeng
机构
[1] Guangdong University of Education,Department of Mathematics
[2] Guangxi Teachers Education University,School of Mathematical Sciences
[3] South China University of Technology,Department of Mathematics
来源
Journal of Mathematical Chemistry | 2014年 / 52卷
关键词
Optimal mild solution; Weighted pseudo-almost automorphic classical solution; Fractional differential equation ; Fractional reaction–diffusion equation; Existence and uniqueness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with a class of fractional differential equations given by Dtαx(t)=Ax(t)+f(t,x(t)).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \hbox {D}_{t}^{\alpha }x(t)=Ax(t)+f(t,x(t)). \end{aligned}$$\end{document}Our main results concern the existence, uniqueness of weighted pseudo-almost automorphic classical solutions and optimal mild solutions. Moreover, as example and applications, we study the weighted pseudo-almost automorphic classical solutions and optimal mild solutions for a fractional reaction–diffusion equation to illustrate the practical usefulness of the analytical results that we establish in the paper.
引用
收藏
页码:1984 / 2012
页数:28
相关论文
共 111 条
[1]  
Benson D(2000)Application of fractional advection–dispersion equation Water Resour. Res. 36 1403-1412
[2]  
Wheatcraft S(2000)Accelerating Brownian motion: a fractional dynamics approach to fast diffusion Europhys. Lett. 51 492-498
[3]  
Meerschaert M(2009)Fractional derivatives: probability interpretation and frequency response of rational approximations Commun. Nonlinear Sci. Numer. Simul. 14 3492-3497
[4]  
Metzler R(2000)The random walk’s guide to anomalous diffusion: a fractional dynamics approach J. Contam. Hydrol. 85 53-71
[5]  
Klafter J(2003)Fractional differential equations driven by Lévy noise J. Appl. Math. Stoch. Anal. 16 97-119
[6]  
Machado J(2001)Eulerian derivative of the fractional advection–dispersion equation J. Contam. Hydrol. 48 69-88
[7]  
Metzler R(2002)Some probability densities and fundamental solutions of fractional evolutions equations Chaos Solitons Fract. 14 433-440
[8]  
Klafter J(2009)Existence of mild solution for some fractional differential equations with nonlocal conditions Semigroup Forum 79 315-322
[9]  
Ahn V(2008)Theory of fractional differential equations in Banach spaces Eur. J. Pure Appl. Math. 1 38-45
[10]  
McVinisch R(2000)Numerical approach to fast reactions in reaction–diffusion systems: application to buffered calcium waves in bistable models J. Comput. Phys. 162 186-189