Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4

被引:0
作者
S. A. Zvyagin
D. Graf
T. Sakurai
S. Kimura
H. Nojiri
J. Wosnitza
H. Ohta
T. Ono
H. Tanaka
机构
[1] Helmholtz-Zentrum Dresden-Rossendorf,Dresden High Magnetic Field Laboratory (HLD
[2] Florida State University,EMFL)
[3] Kobe University,National High Magnetic Field Laboratory
[4] Tohoku University,Research Facility Center for Science and Technology
[5] TU Dresden,Institute for Materials Research
[6] Kobe University,Institut für Festkörper
[7] Osaka Prefecture University, und Materialphysik
[8] Tokyo Institute of Technology,Molecular Photoscience Research Center
来源
Nature Communications | / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum triangular-lattice antiferromagnets are important prototype systems to investigate numerous phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs2CuCl4 as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and r.f. susceptibility measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.
引用
收藏
相关论文
共 50 条
  • [21] Elastic constants and ultrasonic attenuation in the cone state of the frustrated antiferromagnet Cs2CuCl4
    Kreisel, Andreas
    Kopietz, Peter
    Pham Thanh Cong
    Wolf, Bernd
    Lang, Michael
    PHYSICAL REVIEW B, 2011, 84 (02):
  • [22] Phonon processes and the spin-lattice relaxation of two inequivalent Cs sites in Cs2CuCl4 and Cs2CoCl4 single crystals
    Lim, AR
    Jung, JK
    SOLID STATE COMMUNICATIONS, 2004, 132 (06) : 393 - 398
  • [23] Electrical conductivity of Cs2CuCl4 crystals
    N. I. Sorokin
    Crystallography Reports, 2016, 61 : 466 - 468
  • [24] Crystallographic and optical data for Cs2CuCl4
    Mellor, DP
    Quodling, FM
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1936, 95 (3/4): : 315 - 315
  • [25] Electrical conductivity of Cs2CuCl4 crystals
    Sorokin, N. I.
    CRYSTALLOGRAPHY REPORTS, 2016, 61 (03) : 466 - 468
  • [26] Structural correlations in Cs2CuCl4: Pressure dependence of electronic structures
    Jara, E.
    Barreda-Argueso, J. A.
    Gonzalez, J.
    Valiente, R.
    Rodriguez, F.
    PAPERS IN PHYSICS, 2019, 11
  • [27] Quasi-1D S=1/2 antiferromagnet Cs2CuCl4 in a magnetic field
    Coldea, R
    Tennant, DA
    Cowley, RA
    McMorrow, DF
    Dorner, B
    Tylczynski, Z
    PHYSICAL REVIEW LETTERS, 1997, 79 (01) : 151 - 154
  • [28] Ground states of a frustrated spin-1/2 antiferromagnet:: Cs2CuCl4 in a magnetic field -: art. no. 214426
    Veillette, MY
    Chalker, JT
    Coldea, R
    PHYSICAL REVIEW B, 2005, 71 (21):
  • [29] Direct measurement of the spin Hamiltonian and observation of condensation of magnons in the 2D frustrated quantum magnet Cs2CuCl4 -: art. no. 137203
    Coldea, R
    Tennant, DA
    Habicht, K
    Smeibidl, P
    Wolters, C
    Tylczynski, Z
    PHYSICAL REVIEW LETTERS, 2002, 88 (13) : 4
  • [30] Modes of Magnetic Resonance in the Spin-Liquid Phase of Cs2CuCl4
    Povarov, K. Yu.
    Smirnov, A. I.
    Starykh, O. A.
    Petrov, S. V.
    Shapiro, A. Ya.
    PHYSICAL REVIEW LETTERS, 2011, 107 (03)