Pressure-tuning the quantum spin Hamiltonian of the triangular lattice antiferromagnet Cs2CuCl4

被引:0
作者
S. A. Zvyagin
D. Graf
T. Sakurai
S. Kimura
H. Nojiri
J. Wosnitza
H. Ohta
T. Ono
H. Tanaka
机构
[1] Helmholtz-Zentrum Dresden-Rossendorf,Dresden High Magnetic Field Laboratory (HLD
[2] Florida State University,EMFL)
[3] Kobe University,National High Magnetic Field Laboratory
[4] Tohoku University,Research Facility Center for Science and Technology
[5] TU Dresden,Institute for Materials Research
[6] Kobe University,Institut für Festkörper
[7] Osaka Prefecture University, und Materialphysik
[8] Tokyo Institute of Technology,Molecular Photoscience Research Center
来源
Nature Communications | / 10卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Quantum triangular-lattice antiferromagnets are important prototype systems to investigate numerous phenomena of the geometrical frustration in condensed matter. Apart from highly unusual magnetic properties, they possess a rich phase diagram (ranging from an unfrustrated square lattice to a quantum spin liquid), yet to be confirmed experimentally. One major obstacle in this area of research is the lack of materials with appropriate (ideally tuned) magnetic parameters. Using Cs2CuCl4 as a model system, we demonstrate an alternative approach, where, instead of the chemical composition, the spin Hamiltonian is altered by hydrostatic pressure. The approach combines high-pressure electron spin resonance and r.f. susceptibility measurements, allowing us not only to quasi-continuously tune the exchange parameters, but also to accurately monitor them. Our experiments indicate a substantial increase of the exchange coupling ratio from 0.3 to 0.42 at a pressure of 1.8 GPa, revealing a number of emergent field-induced phases.
引用
收藏
相关论文
共 50 条
[21]   Quasi-1D S = ½ antiferromagnet Cs2CuCl4 in a magnetic field [J].
Coldea, R. ;
Tennant, D.A. ;
Cowley, R.A. ;
McMorrow, D.F. ;
Dorner, B. ;
Tylczynski, Z. .
Physical Review Letters, 1997, 79 (01)
[22]   Spin correlations and Dzyaloshinskii-Moriya interaction in Cs2CuCl4 [J].
Fayzullin, M. A. ;
Eremina, R. M. ;
Eremin, M. V. ;
Dittl, A. ;
van Well, N. ;
Ritter, F. ;
Assmus, W. ;
Deisenhofer, J. ;
von Nidda, H. -A. Krug ;
Loidl, A. .
PHYSICAL REVIEW B, 2013, 88 (17)
[23]   Phonon processes and the spin-lattice relaxation of two inequivalent Cs sites in Cs2CuCl4 and Cs2CoCl4 single crystals [J].
Lim, AR ;
Jung, JK .
SOLID STATE COMMUNICATIONS, 2004, 132 (06) :393-398
[24]   Structural correlations in Cs2CuCl4: Pressure dependence of electronic structures [J].
Jara, E. ;
Barreda-Argueso, J. A. ;
Gonzalez, J. ;
Valiente, R. ;
Rodriguez, F. .
PAPERS IN PHYSICS, 2019, 11
[25]   Electrical conductivity of Cs2CuCl4 crystals [J].
Sorokin, N. I. .
CRYSTALLOGRAPHY REPORTS, 2016, 61 (03) :466-468
[26]   Electrical conductivity of Cs2CuCl4 crystals [J].
N. I. Sorokin .
Crystallography Reports, 2016, 61 :466-468
[27]   Crystallographic and optical data for Cs2CuCl4 [J].
Mellor, DP ;
Quodling, FM .
ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 1936, 95 (3/4) :315-315
[28]   Ground states of a frustrated spin-1/2 antiferromagnet:: Cs2CuCl4 in a magnetic field -: art. no. 214426 [J].
Veillette, MY ;
Chalker, JT ;
Coldea, R .
PHYSICAL REVIEW B, 2005, 71 (21)
[29]   Modes of Magnetic Resonance in the Spin-Liquid Phase of Cs2CuCl4 [J].
Povarov, K. Yu. ;
Smirnov, A. I. ;
Starykh, O. A. ;
Petrov, S. V. ;
Shapiro, A. Ya. .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[30]   Quasi-1D S=1/2 antiferromagnet Cs2CuCl4 in a magnetic field [J].
Coldea, R ;
Tennant, DA ;
Cowley, RA ;
McMorrow, DF ;
Dorner, B ;
Tylczynski, Z .
PHYSICAL REVIEW LETTERS, 1997, 79 (01) :151-154