共 50 条
Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction
被引:0
|作者:
Xun Cui
Likun Gao
Cheng-Hsin Lu
Rui Ma
Yingkui Yang
Zhiqun Lin
机构:
[1] China University of Geosciences,Engineering Research Center of Nano
[2] National University of Singapore,Geomaterials of Ministry of Education, Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, Faculty of Materials Science and Chemistry
[3] Northeast Forestry University,Department of Chemical and Biomolecular Engineering
[4] South-Central Minzu University,Key Laboratory of Bio
[5] National Tsing Hua University,based Material Science and Technology of Ministry of Education
来源:
Nano Convergence
|
/
9卷
关键词:
Single-metal-atom catalyst;
Electrocatalysis;
Coordination structure;
Oxygen reduction reaction;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
Single-metal-atom catalysts (SMACs) have garnered extensive attention for various electrocatalytic applications, owing to their maximum atom-utilization efficiency, tunable electronic structure, and remarkable catalytic performance. In particular, carbon-based SMACs exhibit optimal electrocatalytic activity for the oxygen reduction reaction (ORR) which is of paramount importance for several sustainable energy conversion and generation technologies, such as fuel cells and metal-air batteries. Despite continuous endeavors in developing various advanced carbon-based SMACs for electrocatalytic ORR, the rational regulation of coordination structure and thus the electronic structure of carbon-based SMACs remains challenging. In this review, we critically examine the role of coordination structure, including local coordination structure (i.e., metal atomic centers and the first coordination shell) and extended local coordination structure (i.e., the second and higher coordination shells), on the rational design of carbon-based SMACs for high-efficiency electrocatalytic ORR. Insights into the relevance between coordination structures and their intrinsic ORR activities are emphatically exemplified and discussed. Finally, we also propose the major challenges and future perspectives in the rational design of advanced carbon-based SMACs for electrocatalytic ORR. This review aims to emphasize the significance of coordination structure and deepen the insightful understanding of structure-performance relationships.
引用
收藏
相关论文