Tailoring of optoelectronic properties of InAs/GaAs quantum dot nanosystems by strain control

被引:0
作者
Woong Lee
Keesam Shin
Jae-Min Myoung
机构
[1] Changwon National University,School of Nano & Advanced Materials Engineering
[2] Yonsei University,Dept. of Materials Science and Engineering
来源
Electronic Materials Letters | 2009年 / 5卷
关键词
quantum dot; bandgap engineering; strain control; photovoltaics;
D O I
暂无
中图分类号
学科分类号
摘要
Full three-dimensional numerical analysis based on continuum elasticity and model solid theory has been carried out to evaluate some possible means of tailoring the optoelectronic properties of InAs/GaAs quantum dot (QD) nanosystems. Numerical results predicted that while the stacking period control leads to the shifts in valence band edges, incorporation of InxGa1−x As ternary strain relief layer (SRL) causes composition-dependent shifts in conduction band edges. On the other hand, modification of the SRL shape itself did not yield significant changes in the confinement potentials. It is therefore suggested that strain control by incorporation of ternary intermediate layers combined with geometry controls, would allow greater flexibility in the tailoring of the opto-electronic characteristics of QD-based systems.
引用
收藏
页码:145 / 150
页数:5
相关论文
共 50 条
  • [21] InAs/InGaAs/GaAs coupled quantum dot laser with predeposited InAs seed layer
    Lee, Chi-Sen
    Chang, Fu-Yu
    Liu, Day-Shan
    Lin, Hao-Hsiung
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (8A): : 6271 - 6274
  • [22] Effect of structural properties of InAs/GaAs QDs on optoelectronic devices
    Faraji, Abdelilah
    Sabri, Sara
    Malek, Rachid
    Kassmi, Khalil
    MATERIALS TODAY-PROCEEDINGS, 2021, 45 : 7329 - 7333
  • [23] Self-assembled InAs/GaAs quantum dots and quantum dot laser
    王占国
    刘峰奇
    梁基本
    徐波
    Science China Mathematics, 2000, (08) : 861 - 870
  • [24] The strain energy distribution of the capping layer surface for InAs/GaAs quantum dot along different growth directions
    Yu, Zhongyuan
    Liu, Yumin
    OPTOELECTRONIC MATERIALS AND DEVICES II, 2007, 6782
  • [25] Resonant emission of a single InAs/GaAs quantum dot in a waveguiding configuration
    Melet, Romain
    Grousson, Roger
    Voliotis, Valia
    Roditchev, Dimitri
    Lernaitre, Aristide
    Martinez, Anthony
    Ramdane, Abderrahim
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 913 - +
  • [26] Optical studies of InAs/GaAs and Ge/Si quantum dot structures
    Jan, GJ
    Lai, CM
    Chang, FY
    Perng, YH
    Chang, CW
    Kao, CH
    Jan, IC
    Lin, HH
    QUANTUM SENSING: EVOLUTION AND REVOLUTION FROM PAST TO FUTURE, 2003, 4999 : 249 - 260
  • [27] Modulation bandwidth of inhomogeneously broadened InAs/GaAs quantum dot lasers
    Qasaimeh, O
    OPTICS COMMUNICATIONS, 2004, 236 (4-6) : 387 - 394
  • [28] InAs quantum dot formation on GaAs pyramids by selective area MOVPE
    Umeda, T
    Kumakura, K
    Motohisa, J
    Fukui, T
    PHYSICA E, 1998, 2 (1-4): : 714 - 719
  • [29] Voltage recovery in charged InAs/GaAs quantum dot solar cells
    Phu Lam
    Hatch, Sabina
    Wu, Jiang
    Tang, Mingchu
    Dorogan, Vitally G.
    Mazur, Yuriy I.
    Salamo, Gregory J.
    Ramiro, Inigo
    Seeds, Alwyn
    Liu, Huiyun
    NANO ENERGY, 2014, 6 : 159 - 166
  • [30] Effect of InAs/GaAs Quantum Dot Size on Infrared Photoresponse Characteristics
    Tien Dai Nguyen
    Seo, Dong-Bum
    Kim, Eui-Tae
    JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2015, 10 (05) : 671 - 674