Second order sufficient optimality conditions in vector optimization

被引:0
作者
Ning E.
Wen Song
Yu Zhang
机构
[1] Harbin Financial College,School of Mathematical Sciences
[2] Harbin Normal University,School of Management
[3] Harbin Normal University,undefined
来源
Journal of Global Optimization | 2012年 / 54卷
关键词
Isolated local minimizer; Generalized polyhedral; Second order growth condition; Second-order sufficient conditions; Robinson’s constraint qualification;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we mainly consider second-order sufficient conditions for vector optimization problems. We first present a second-order sufficient condition for isolated local minima of order 2 to vector optimization problems and then prove that the second-order sufficient condition can be simplified in the case where the constrained cone is a convex generalized polyhedral and/or Robinson’s constraint qualification holds.
引用
收藏
页码:537 / 549
页数:12
相关论文
共 56 条
  • [1] Aghezzaf B.(1999)Second order optimality conditions in multiobjective optimization problems J. Optim. Theory Appl. 102 37-50
  • [2] Hachimi M.(1968)Fréchet differentiability of convex functions Acta Math. 121 31-47
  • [3] Asplund E.(1984)Stability in mathematical programming with nondifferentiable data SIAM J. Control Optim. 22 239-254
  • [4] Auslender A.(2011)On second order optimiality condition in constrained multiobjective optimization Nonlinear Anal. 74 1372-1382
  • [5] Bednařík D.(1980)Second order and related extremality conditions in nonlinear programming J. Optim. Theory Appl. 31 143-165
  • [6] Pastor K.(2006)On sufficient second order optimality conditions in multiobjective optimization Math. Methods Oper. Res. 63 77-85
  • [7] Ben-Tal A.(1999)Second order optimality conditions based on parabolic second order tangent sets SIAM J. Optim. 9 466-492
  • [8] Bigi G.(2000)Compactly epi-Lipschtizian convex sets and functions in normed spaces J. Convex. Anal. 7 375-393
  • [9] Bonnans J.F.(1993)Super efficiency in vector optimization Trans. Am. Math. Soc. 338 105-122
  • [10] Cominetti R.(1986)A Gauss–Newton approach to solving generalized inequalities Math. Oper. Res. 11 632-643