A new class of differential 4-uniform permutations from exponential permutation

被引:0
作者
R. K. Sharma
P. R. Mishra
Yogesh Kumar
机构
[1] IIT Delhi,Department of Mathematics
[2] SAG,undefined
[3] DRDO,undefined
来源
Applicable Algebra in Engineering, Communication and Computing | 2023年 / 34卷
关键词
Permutations; Differential uniformity; Boolean functions; 05A05; 06E30; 94A60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study the differential δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta $$\end{document}-uniform property of two position swapped Exponential Welch Costas (EWC) permutations on Zp-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{p-1}$$\end{document} and construct permutations with δ=4,6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\delta = 4, 6$$\end{document} for different values of p. We calculate the number of swapped EWC permutations with differential uniformity 6 for primes of the form 4d+3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4d+3$$\end{document}. For primes of the form 4d+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4d+1$$\end{document}, we obtain a lower bound on the number of swapped EWC permutations with differential uniformity 4.
引用
收藏
页码:897 / 912
页数:15
相关论文
共 16 条
  • [1] A new class of differential 4-uniform permutations from exponential permutation
    Sharma, R. K.
    Mishra, P. R.
    Kumar, Yogesh
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2023, 34 (06) : 897 - 912
  • [2] New differentially 4-uniform permutations from modifications of the inverse function
    Jeong, Jaeseong
    Koo, Namhun
    Kwon, Soonhak
    FINITE FIELDS AND THEIR APPLICATIONS, 2022, 77
  • [3] Differentially low uniform permutations from known 4-uniform functions
    Marco Calderini
    Designs, Codes and Cryptography, 2021, 89 : 33 - 52
  • [4] Differentially low uniform permutations from known 4-uniform functions
    Calderini, Marco
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (01) : 33 - 52
  • [5] Constructing new differentially 4-uniform permutations from known ones
    Sin, Yongho
    Kim, Kwangyon
    Kim, Ryul
    Han, Songchol
    FINITE FIELDS AND THEIR APPLICATIONS, 2020, 63
  • [6] On Permutation Quadrinomials and 4-Uniform BCT
    Li, Nian
    Xiong, Maosheng
    Zeng, Xiangyong
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (07) : 4845 - 4855
  • [7] A new family of differentially 4-uniform permutations over for odd k
    Peng Jie
    Tan Chik How
    Wang QiChun
    SCIENCE CHINA-MATHEMATICS, 2016, 59 (06) : 1221 - 1234
  • [8] New Differentially 4-Uniform Piecewise Permutations over F22k from the Inverse Function
    Li, Shuai
    Miao, Li
    SYMMETRY-BASEL, 2023, 15 (01):
  • [9] A method of construction of differentially 4-uniform permutations over Vm for even m
    Davydov, Stepan A.
    Kruglov, Igor A.
    DISCRETE MATHEMATICS AND APPLICATIONS, 2021, 31 (06) : 383 - 388
  • [10] A new family of differentially 4-uniform permutations over F(22k) for odd k
    PENG Jie
    TAN ChikHow
    WANG QiChun
    Science China(Mathematics), 2016, 59 (06) : 1221 - 1234