Microspectroscopic Study of Liposome-to-cell Interaction Revealed by Förster Resonance Energy Transfer

被引:0
|
作者
Svetlana L. Yefimova
Irina Yu. Kurilchenko
Tatyana N. Tkacheva
Nataliya S. Kavok
Igor N. Todor
Nataliya Yu. Lukianova
Vasyl F. Chekhun
Yuriy V. Malyukin
机构
[1] NAS of Ukraine,Institute for Scintillation Materials
[2] Slavyansk State Pedagogical University,R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology
[3] NAS of Ukraine,undefined
来源
Journal of Fluorescence | 2014年 / 24卷
关键词
Förster resonance energy transfer; Fluorescent dyes; Liposome; Living cells;
D O I
暂无
中图分类号
学科分类号
摘要
We report the Förster resonance energy transfer (FRET)-labeling of liposomal vesicles as an effective approach to study in dynamics the interaction of liposomes with living cells of different types (rat hepatocytes, rat bone marrow, mouse fibroblast-like cells and human breast cancer cells) and cell organelles (hepatocyte nuclei). The in vitro experiments were performed using fluorescent microspectroscopic technique. Two fluorescent dyes (DiO as the energy donor and DiI as an acceptor) were preloaded in lipid bilayers of phosphatidylcholine liposomes that ensures the necessary distance between the dyes for effective FRET. The change in time of the donor and acceptor relative fluorescence intensities was used to visualize and trace the liposome-to-cell interaction. We show that FRET-labeling of liposome vesicles allows one to reveal the differences in efficiency and dynamics of these interactions, which are associated with composition, fluidity, and metabolic activity of cell plasma membranes.
引用
收藏
页码:403 / 409
页数:6
相关论文
共 50 条
  • [1] Microspectroscopic Study of Liposome-to-cell Interaction Revealed by Forster Resonance Energy Transfer
    Yefimova, Svetlana L.
    Kurilchenko, Irina Yu.
    Tkacheva, Tatyana N.
    Kavok, Nataliya S.
    Todor, Igor N.
    Lukianova, Nataliya Yu.
    Chekhun, Vasyl F.
    Malyukin, Yuriy V.
    JOURNAL OF FLUORESCENCE, 2014, 24 (02) : 403 - 409
  • [2] Förster Resonance Energy Transfer Study of Cytochrome c—Lipid Interactions
    Galyna P. Gorbenko
    Valeriya Trusova
    Julian G. Molotkovsky
    Journal of Fluorescence, 2018, 28 : 79 - 88
  • [3] Photonic effects on the Förster resonance energy transfer efficiency
    Freddy T. Rabouw
    Stephan A. den Hartog
    Tim Senden
    Andries Meijerink
    Nature Communications, 5
  • [4] Bacterial detection based on Förster resonance energy transfer
    Zhang, Wanqing
    Li, Weiqiang
    Song, Yang
    Xu, Qian
    Xu, Hengyi
    Biosensors and Bioelectronics, 2024, 255
  • [5] Förster resonance energy transfer within the neomycin aptamer
    Hurter, Florian
    Halbritter, Anna-Lena J.
    Ahmad, Iram M.
    Braun, Markus
    Sigurdsson, Snorri Th.
    Wachtveitl, Josef
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2024, 26 (08) : 7157 - 7165
  • [6] Paths to Förster’s resonance energy transfer (FRET) theory
    B.R. Masters
    The European Physical Journal H, 2014, 39 : 87 - 139
  • [7] Understanding of Förster Resonance Energy Transfer (FRET) in Ionic Materials
    Jalihal, Amanda
    Le, Thuy
    Macchi, Samantha
    Krehbiel, Hannah
    Bashiru, Mujeebat
    Forson, Mavis
    Siraj, Noureen
    SUSTAINABLE CHEMISTRY, 2021, 2 (04): : 564 - 575
  • [8] Förster-type resonance energy transfer (FRET): Applications
    Demir H.V.
    Hernández Martínez P.L.
    Govorov A.
    SpringerBriefs in Applied Sciences and Technology, 2017, 0 (9789811018749): : 1 - 40
  • [9] Förster resonance energy transfer within single chain nanoparticles
    Maag, Patrick H.
    Feist, Florian
    Frisch, Hendrik
    Roesky, Peter W.
    Barner-Kowollik, Christopher
    CHEMICAL SCIENCE, 2024, 15 (14) : 5218 - 5224
  • [10] Förster Resonance Energy Transfer Control by Means of an Optical Force
    Nagai, Tatsuya
    Jie, Lu
    Teranishi, Satsuki
    Yuyama, Ken-ichi
    Shoji, Tatsuya
    Matsumura, Yuriko
    Tsuboi, Yasuyuki
    ADVANCED OPTICAL MATERIALS, 2024, 12 (19)