Mapping of peatlands in the Moscow oblast based on high-resolution remote sensing data

被引:0
|
作者
A. A. Sirin
A. A. Maslov
N. A. Valyaeva
O. P. Tsyganova
T. V. Glukhova
机构
[1] Russian Academy of Sciences,Institute of Forest Science
来源
Contemporary Problems of Ecology | 2014年 / 7卷
关键词
peatlands; peatbogs; remote sensing; mapping; Moscow oblast; Spot 5; GIS;
D O I
暂无
中图分类号
学科分类号
摘要
Peatlands, including those transformed by economic activities (drainage for forestry and agriculture, peat extraction), belong to various land categories. There is no general system for their inventory and accounting. Remote sensing methodology based on high-resolution space imagery is proposed and applied for mapping peatlands of different types and states based on the example of Moscow oblast. The methodology can be used to solve scientific and practical tasks that require the development of a regional peatland geoin-formation system (GIS) using a common base map. The total area of peatlands and peatbogs is shown to surpass 6% of the oblast territory.
引用
收藏
页码:808 / 814
页数:6
相关论文
共 50 条
  • [21] Emerging Issues in Mapping Urban Impervious Surfaces Using High-Resolution Remote Sensing Images
    Shao, Zhenfeng
    Cheng, Tao
    Fu, Huyan
    Li, Deren
    Huang, Xiao
    REMOTE SENSING, 2023, 15 (10)
  • [22] The method of using remote sensing high-resolution imagery data in cartographical study of seaports
    Klewski, Andrzej
    Sanecki, Jozef
    Maj, Konrad
    Stepien, Grzegorz
    Gmaj, Robert
    SCIENTIFIC JOURNALS OF THE MARITIME UNIVERSITY OF SZCZECIN-ZESZYTY NAUKOWE AKADEMII MORSKIEJ W SZCZECINIE, 2010, 22 (94): : 33 - 38
  • [23] Water Chlorophyll Estimation in an Urban Canal System With High-Resolution Remote Sensing Data
    Zhou, Xiran
    Chen, Jiawei
    Rakstad, Todd E.
    Ploughe, Mike
    Tang, Pingbo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (11) : 1876 - 1880
  • [24] Mangrove Typology: A Proposal for Mapping based on High Spatial Resolution Orbital Remote Sensing
    Moura de Almeida, Paula Maria
    Madureira Cruz, Carla Bernadete
    Amaral, Felipe Gonsalves
    Almeida Furtado, Luiz Felipe
    Duarte, Gabriel dos Santos
    da Silva, Gabriella Ferreira
    de Barros, Rafael Silva
    Pereira Abrantes Marques, Joao Freitas
    Cupertino Bastos, Rita Maria
    Rosario, Edineuza dos Santos
    Santos, Valdenira Ferreira
    Alves, Alex
    Cliaves, Filipe de Oliveira
    Comes Soares, Mario Luiz
    JOURNAL OF COASTAL RESEARCH, 2020, : 1 - 5
  • [25] Boundary Shape-Preserving Model for Building Mapping From High-Resolution Remote Sensing Images
    Hu, Anna
    Wu, Liang
    Chen, Siqiong
    Xu, Yongyang
    Wang, Haitao
    Xie, Zhong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [26] HELIPORT DETECTION IN HIGH-RESOLUTION OPTICAL REMOTE SENSING IMAGES
    Baseski, Emre
    2018 9TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2018,
  • [27] High-resolution image compression algorithms in remote sensing imaging
    Ma, Xianghe
    DISPLAYS, 2023, 79
  • [28] HIGH-RESOLUTION REMOTE SENSING IMAGE SCENE UNDERSTANDING: A REVIEW
    Zhu, Qiqi
    Sun, Xiongli
    Zhong, Yanfei
    Zhang, Liangpei
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3061 - 3064
  • [29] Learning to Semantically Segment High-Resolution Remote Sensing Images
    Nogueira, Keiller
    Dalla Mura, Mauro
    Chanussot, Jocelyn
    Schwartz, William Robson
    dos Santos, Jefersson A.
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3566 - 3571
  • [30] Using Multisource High-Resolution Remote Sensing Data (2 m) with a Habitat-Tide-Semantic Segmentation Approach for Mangrove Mapping
    Sun, Ziyu
    Jiang, Weiguo
    Ling, Ziyan
    Zhong, Shiquan
    Zhang, Ze
    Song, Jie
    Xiao, Zhijie
    REMOTE SENSING, 2023, 15 (22)