Multiple solutions for singular semipositone boundary value problems of fourth-order differential systems with parameters

被引:0
作者
Longfei Lin
Yansheng Liu
Daliang Zhao
机构
[1] Shandong Normal University,School of Mathematics and Statistics
来源
Boundary Value Problems | / 2021卷
关键词
Multiple solutions; Singular semipositone problems; Cone; Fixed point index;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to establish some results about the existence of multiple solutions for the following singular semipositone boundary value problem of fourth-order differential systems with parameters: {u(4)(t)+β1u″(t)−α1u(t)=f1(t,u(t),v(t)),0<t<1;v(4)(t)+β2v″(t)−α2v(t)=f2(t,u(t),v(t)),0<t<1;u(0)=u(1)=u″(0)=u″(1)=0;v(0)=v(1)=v″(0)=v″(1)=0,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} u^{(4)}(t)+\beta _{1}u''(t)-\alpha _{1}u(t)=f_{1}(t,u(t),v(t)),\quad 0< t< 1; \\ v^{(4)}(t)+\beta _{2}v''(t)-\alpha _{2}v(t)=f_{2}(t,u(t),v(t)),\quad 0< t< 1; \\ u(0)=u(1)=u''(0)=u''(1)=0; \\ v(0)=v(1)=v''(0)=v''(1)=0, \end{cases} $$\end{document} where f1,f2∈C[(0,1)×R0+×R,R]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$f_{1},f_{2}\in C[(0,1)\times \mathbb{R}^{+}_{0}\times \mathbb{R}, \mathbb{R}]$\end{document}, R0+=(0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb{R}_{0}^{+}=(0,+\infty )$\end{document}. By constructing a special cone and applying fixed point index theory, some new existence results of multiple solutions for the considered system are obtained under some suitable assumptions. Finally, an example is worked out to illustrate the main results.
引用
收藏
相关论文
共 68 条
[1]  
Bishop S.A.(2017)Existence of mild solution of impulsive quantum stochastic differential equation with nonlocal conditions Anal. Math. Phys. 7 255-265
[2]  
Ayoola E.O.(2013)Solutions for Bound. Value Probl. 2013 1959-1972
[3]  
Oghonyon G.J.(2019)th-order boundary value problems of impulsive singular nonlinear integro-differential equations in Banach spaces J. Appl. Anal. Comput. 9 725-740
[4]  
Chen Y.(1994)Positive solutions for a nonlinear discrete fractional boundary value problem with a Int. J. Math. Math. Sci. 17 71-87
[5]  
Qin B.(2013)-Laplacian operator J. Appl. Math. 2013 477-484
[6]  
Cheng W.(2018)Nonresonance conditions for fourth-order nonlinear boundary value problems Appl. Math. J. Chin. Univ. 33 721-730
[7]  
Xu J.(2003)Existence of positive solutions for J. Math. Anal. Appl. 281 223-232
[8]  
O’Regan D.(2013)-Laplacian dynamic equations with derivative on time scales J. Funct. Spaces 2013 248-260
[9]  
De C.C.(2007)Existence and uniqueness results for mild solutions of random impulsive abstract neutral partial differential equation over real axis Appl. Math. Comput. 192 911-921
[10]  
Fabry C.(2003)Positive solutions of fourth-order boundary value problems with two parameters J. Math. Anal. Appl. 286 1165-1182