New Optimality Conditions for the Semivectorial Bilevel Optimization Problem

被引:0
作者
S. Dempe
N. Gadhi
A. B. Zemkoho
机构
[1] TU Bergakademie Freiberg,Department of Mathematics and Computer Science
[2] Dhar El Mehrez,Department of Mathematics
[3] Sidi Mohamed Ben Abdellah University,undefined
来源
Journal of Optimization Theory and Applications | 2013年 / 157卷
关键词
Semivectorial bilevel optimization; Multiobjective optimization; Weakly efficient solution; Optimal value function; Optimality conditions;
D O I
暂无
中图分类号
学科分类号
摘要
The paper is concerned with the optimistic formulation of a bilevel optimization problem with multiobjective lower-level problem. Considering the scalarization approach for the multiobjective program, we transform our problem into a scalar-objective optimization problem with inequality constraints by means of the well-known optimal value reformulation. Completely detailed first-order necessary optimality conditions are then derived in the smooth and nonsmooth settings while using the generalized differentiation calculus of Mordukhovich. Our approach is different from the one previously used in the literature and the conditions obtained are new. Furthermore, they reduce to those of a usual bilevel program, if the lower-level objective function becomes single-valued.
引用
收藏
页码:54 / 74
页数:20
相关论文
共 50 条
  • [21] A solution method for the optimistic linear semivectorial bilevel optimization problem
    Lv, Yibing
    Wan, Zhongping
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [22] Optimality conditions for a bilevel optimization problem in terms of KKT multipliers and convexificators
    Abderrazzak Gadhi, Nazih
    Lafhim, Lahoussine
    [J]. CROATIAN OPERATIONAL RESEARCH REVIEW, 2019, 10 (02) : 329 - 335
  • [23] Semivectorial Bilevel Optimization on Riemannian Manifolds
    Bonnel, Henri
    Todjihounde, Leonard
    Udriste, Constantin
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (02) : 464 - 486
  • [24] Optimality results for a specific bilevel optimization problem
    Dempe, S.
    Gadhi, N.
    [J]. OPTIMIZATION, 2011, 60 (07) : 813 - 822
  • [25] The bilevel programming problem: reformulations, constraint qualifications and optimality conditions
    Dempe, S.
    Zemkoho, A. B.
    [J]. MATHEMATICAL PROGRAMMING, 2013, 138 (1-2) : 447 - 473
  • [26] The bilevel programming problem: reformulations, constraint qualifications and optimality conditions
    S. Dempe
    A. B. Zemkoho
    [J]. Mathematical Programming, 2013, 138 : 447 - 473
  • [27] OPTIMALITY CONDITIONS FOR BILEVEL OPTIMIZATION PROBLEM WITH BOTH LEVELS PROBLEMS BEING MULTIOBJECTIVE
    Li, Gaoxi
    Wan, Zhongping
    Zhao, Xiaoke
    [J]. PACIFIC JOURNAL OF OPTIMIZATION, 2017, 13 (03): : 421 - 441
  • [28] Necessary optimality conditions for a bilevel multiobjective programming problem via a ψ-reformulation
    Lafhim, L.
    Gadhi, N.
    Hamdaoui, K.
    Rahou, F.
    [J]. OPTIMIZATION, 2018, 67 (12) : 2179 - 2189
  • [29] OPTIMALITY CONDITIONS FOR SPECIAL SEMIDEFINITE BILEVEL OPTIMIZATION PROBLEMS
    Dempe, Stephan
    Kue, Floriane Mefo
    Mehlitz, Patrick
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) : 1564 - 1587
  • [30] Optimality conditions for mixed discrete bilevel optimization problems
    Dempe, S.
    Kue, F. Mefo
    Mehlitz, P.
    [J]. OPTIMIZATION, 2018, 67 (06) : 737 - 756