Nanoindentation of regenerated cellulose fibres

被引:0
作者
Wolfgang Gindl
Johannes Konnerth
Thomas Schöberl
机构
[1] BOKU-Vienna,Department of Materials Science and Process Engineering
[2] WOOD K PLUS,Competence Centre for Wood Composites and Wood Chemistry
[3] Austrian Academy of Sciences,Erich Schmid Institute for Materials Science
来源
Cellulose | 2006年 / 13卷
关键词
Elastic modulus; Hardness; Lyocell; Nanoindentation; Regenerated cellulose fibre; Viscose;
D O I
暂无
中图分类号
学科分类号
摘要
Nanoindentation was performed on cross sections of regenerated cellulose fibres with different structure and properties. Same as in single-fibre tensile tests, the elastic modulus of lyocell was higher than the elastic modulus of viscose. However, in spite of its tensile strength being twice as high as viscose, the hardness of lyocell was 15% lower than viscose. The overall degree of orientation of cellulose chains being higher in lyocell than in viscose, it is proposed that reduced lateral bonding in lyocell is the reason for the low hardness measured by nanoindentation compared to viscose.
引用
收藏
页码:1 / 7
页数:6
相关论文
共 50 条
[11]   Regenerated cellulose fibre reinforced casein films: Effect of plasticizer and fibres on the film properties [J].
Sung-Woo Cho ;
Mikael Skrifvars ;
Kumar Hemanathan ;
Pirabasenan Mahimaisenan ;
Kayode Adekunle .
Macromolecular Research, 2014, 22 :701-709
[12]   Regenerated cellulose fibre reinforced casein films: Effect of plasticizer and fibres on the film properties [J].
Cho, Sung-Woo ;
Skrifvars, Mikael ;
Hemanathan, Kumar ;
Mahimaisenan, Pirabasenan ;
Adekunle, Kayode .
MACROMOLECULAR RESEARCH, 2014, 22 (07) :701-709
[13]   Nonalkali swelling solutions for regenerated cellulose [J].
Tatarova, Ivana ;
Manian, Avinash P. ;
Siroka, Barbora ;
Bechtold, Thomas .
CELLULOSE, 2010, 17 (05) :913-922
[14]   PERFORMANCE PROPERTIES OF REGENERATED CELLULOSE FIBERS [J].
Kayseri, Gonca Ozcelik ;
Bozdogan, Faruk ;
Hes, Lubos .
TEKSTIL VE KONFEKSIYON, 2010, 20 (03) :208-212
[15]   Nonalkali swelling solutions for regenerated cellulose [J].
Ivana Tatárová ;
Avinash P. Manian ;
Barbora Široká ;
Thomas Bechtold .
Cellulose, 2010, 17 :913-922
[16]   Identification of microstructural anisotropy of cellulose cement boards by means of nanoindentation [J].
Gorzelanczyk, Tomasz ;
Pachnicz, Michal ;
Rozanski, Adrian ;
Schabowicz, Krzysztof .
CONSTRUCTION AND BUILDING MATERIALS, 2020, 257
[17]   Process-dependent nanostructures of regenerated cellulose fibres revealed by small angle neutron scattering [J].
Sawada, Daisuke ;
Nishiyama, Yoshiharu ;
Roeder, Thomas ;
Porcar, Lionel ;
Zahra, Hilda ;
Trogen, Mikaela ;
Sixta, Herbert ;
Hummel, Michael .
POLYMER, 2021, 218
[18]   Complementarities of nanoindentation and atomic force microscopy for exploring micromechanical features of ancient flax fibres [J].
Goudenhooft, Camille ;
Durand, Sylvie ;
Caer, Celia ;
Melelli, Alessia ;
Magueresse, Anthony ;
Arnould, Olivier ;
Balnois, Eric ;
Quiles, Anita ;
Shah, Darshil U. ;
Beaugrand, Johnny ;
Bourmaud, Alain .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2025, 190
[19]   EFFECTS OF ACID HYDROLYSIS TIME ON CELLULOSE NANOCRYSTALS PROPERTIES: NANOINDENTATION AND THERMOGRAVIMETRIC STUDIES [J].
Krishnamachari, P. ;
Hashaikeh, R. ;
Chiesa, M. ;
El Rab, K. R. M. Gad .
CELLULOSE CHEMISTRY AND TECHNOLOGY, 2012, 46 (1-2) :13-18
[20]   Production and Assessment of Poly(Lactic Acid) Matrix Composites Reinforced with Regenerated Cellulose Fibres for Fused Deposition Modelling [J].
Gauss, Christian ;
Pickering, Kim L. ;
Tshuma, Joshua ;
McDonald-Wharry, John .
POLYMERS, 2022, 14 (19)