Some Characterizations of Approximate Solutions for Robust Semi-infinite Optimization Problems

被引:0
作者
Xiangkai Sun
Kok Lay Teo
Xian-Jun Long
机构
[1] Chongqing Technology and Business University,Chongqing Key Laboratory of Social Economy and Applied Statistics, College of Mathematics and Statistics
[2] Sunway University,School of Mathematical Sciences
[3] Tianjin University of Finance and Economics,Coordinated Innovation Center for Computable Modeling in Management Science
来源
Journal of Optimization Theory and Applications | 2021年 / 191卷
关键词
Approximate efficient solutions; Semi-infinite optimization; Scalarization; 90C26; 90C29; 90C46;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with robust ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi Pareto efficient solutions of an uncertain semi-infinite multiobjective optimization problem. By using robust optimization and a modified ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-constraint scalarization methodology, we first present the relationship between robust ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi solutions of the uncertain optimization problem and that of its corresponding scalar optimization problem. Then, we obtain necessary optimality conditions for robust ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi Pareto efficient solutions of the uncertain optimization problem in terms of a new robust-type subdifferential constraint qualification. We also deduce sufficient optimality conditions for robust ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi Pareto efficient solutions of the uncertain optimization problem under assumptions of generalized convexity. Besides, we introduce a Mixed-type robust ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-multiobjective dual problem (including Wolfe type and Mond-Weir type dual problems as special cases) of the uncertain optimization problem, and explore robust ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi weak, ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi strong, and ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi converse duality properties. Furthermore, we introduce an ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi saddle point for the uncertain optimization problem and investigate the relationships between the ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi saddle point and the robust ε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon $$\end{document}-quasi Pareto efficient solution for the uncertain optimization problem.
引用
收藏
页码:281 / 310
页数:29
相关论文
共 99 条
  • [1] Ben-Tal A(2002)Robust optimization-methodology and applications Math. Program. Ser. B 92 453-480
  • [2] Nemirovski A(2019)Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints J. Optim. Theory Appl. 181 411-436
  • [3] Chen JW(2020)Radius of robust feasibility of system of convex inequalities with uncertain data J. Optim. Theory Appl. 184 384-399
  • [4] Köbis E(2016)Approximate solutions of multiobjective optimization problems Positivity 20 187-207
  • [5] Yao JC(2019)On approximate solutions for nonsmooth robust multiobjective optimization problems Optimization 68 1653-1683
  • [6] Chen JW(2009)Constraint qualifications for extended Farkass lemmas and Lagrangian dualities in convex infinite programming SIAM J. Optim. 20 1311-1332
  • [7] Li J(2010)Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming Nonlinear Anal. 73 1143-1159
  • [8] Li XB(2015)Stable Lagrange dualities for robust conical programming J. Nonlinear Convex Anal. 16 2141-2158
  • [9] Lv Y(2014)Local and global optimality conditions for DC infinite optimization problems Taiwanese J. Math. 18 817-834
  • [10] Yao JC(2014)Robust multiobjective optimization and applications in portfolio optimization Eur. J. Oper. Res. 234 422-433