Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics

被引:0
作者
Y. Slimani
B. Unal
M. A. Almessiere
E. Hannachi
Ghulam Yasin
A. Baykal
I. Ercan
机构
[1] Imam Abdulrahman Bin Faisal University,Department of Biophysics, Institute for Research and Medical Consultations (IRMC)
[2] Istanbul University - Cerrahpaşa,Institute of Forensic Sciences and Legal Medicine and Institute of Nanotechnology and Biotechnology
[3] University of Carthage,Laboratory of Physics of Materials
[4] Beijing University of Chemical Technology, Structures and Properties, Department of Physics, Faculty of Sciences of Bizerte
[5] Imam Abdulrahman Bin Faisal University,State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering
来源
Journal of Materials Science: Materials in Electronics | 2020年 / 31卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
(BaTiO3–SrTiO3)/(WO3)x ceramics with x = 0 up to 5% were synthesized using solid-state reaction via high-energy ballf milling technique. Various characterization techniques were used including X-ray powder diffraction (XRD), scanning electron microscope (SEM), Fourier transform-infrared spectroscopy (FT-IR), and UV–visible diffuse reflectance (DR) spectrophotometer. Structural analysis via XRD indicates the formation of two separate phases of SrTiO3 (STO) and BaTiO3 (BTO) having both cubic structures. The presence of BaWO4 as impurity was detected for higher concentration. SEM observations show a reduction in the average grains size with increasing WO3 addition. In comparison with free-added ceramic, the optical band gap energy (Eg) shows a slight increase with WO3 addition. Contextual investigations on the electrical and dielectric properties of various WO3 added to BTO–STO ceramics have been used to evaluate conductivity (σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document}), dielectric constant and loss (εr′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon^{\prime}_{r}$$\end{document} and εr″\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon^{\prime\prime}_{r}$$\end{document}), and dissipation factor (tanδ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{t}\mathrm{a}\mathrm{n}\delta$$\end{document}) against both frequency and dc bias voltages. Generally, both σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma$$\end{document} and εr″\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon^{\prime\prime}_{r}$$\end{document} correspond to the tendency of the power law to frequency. However, dc bias has been noticed to be lesser affecting the conduction mechanisms, which has a small variation for various WO3 addition ratios. In addition, the dissipation factor was found to be highly dependent on both the addition ratio and the frequency as well as dc bias applied.
引用
收藏
页码:7786 / 7797
页数:11
相关论文
共 304 条
[1]  
Seevakan K(2018)Structural, morphological and magneto-optical properties of CuMoO Ceram. Int. 44 20075-20083
[2]  
Manikandan A(2019) electrochemical nanocatalyst as supercapacitor electrode J. Mater. Chem. C 7 202-217
[3]  
Devendran P(2019)Transparent metal-oxide nanowires and their applications in harsh electronics J. Magn. Magn. Mater. 486 165254-18843
[4]  
Slimani Y(2018)Structural, magnetic and electrochemical characterizations of Bi Ceram. Int. 44 18836-6221
[5]  
Baykal A(2020)Mo Ceram. Int. 46 6217-19957
[6]  
Alagesan T(2018)O Ceram. Int. 44 19950-12
[7]  
Zhou Z(2018) nanoparticle for supercapacitor application Cryogenics 92 5-1202
[8]  
Lan C(2020)Higher intra-granular and inter-granular performances of YBCO superconductor with TiO J. Magn. Magn. Mater. 505 166741-416
[9]  
Wei R(2019) nano-sized particles addition J. Alloys Compd. 788 1193-25
[10]  
Ho JC(2019)Synthesis of LiBaZrO J. Alloys Compd. 794 402-132