A unified a posteriori error estimate of local discontinuous Galerkin approximations for reactive transport problems

被引:0
作者
Jiming Yang
机构
[1] Hunan Institute of Engineering,College of Science
[2] Xiangtan University,College of Civil Engineering and Mechanics
来源
Indian Journal of Pure and Applied Mathematics | 2015年 / 46卷
关键词
A posteriori error estimates; duality technique; local discontinuous Galerkin method; reactive transport;
D O I
暂无
中图分类号
学科分类号
摘要
To solve reactive transport problems in porous media, local discontinuous Galerkin (LDG) approximations are investigated. Based on the duality technique and the residual error notations, a unified a posteriori error estimate in L2(L2) norm is obtained, which is usually used for guiding anisotropic and dynamic mesh adaptivity.
引用
收藏
页码:759 / 772
页数:13
相关论文
共 42 条
[1]  
Aizinger V(2000)The local discontinuous Galerkin method for contaminant transport Adv. Water Resources 24 73-87
[2]  
Dawson C(1987)The optimal convergence rate of the SIAM J. Numer. Anal. 24 750-776
[3]  
Cockburn B(1987)-version of the finite element method RAIRO Model. Math. Anal. Numer. 21 199-238
[4]  
Castillo P(1997)The J. Comp. Phys. 131 267-279
[5]  
Babuška I(2005) version of the finite element method with quasi-uniform meshes J. Sci. Comp. 22–23 147-185
[6]  
Suri M(2002)A high-order accurate discontinuous finite element method for the numerical solution of the compressible navier-stokes equations Comm. Numer. Meth. Engr. 18 69-75
[7]  
Babuška I(2005)An a posteriori error estimate for the local discontinuous Galerkin method applied to linear and nonlinear diffusion problems J. Sci. Comp. 22–23 187-204
[8]  
Suri M(2008)Local eiscontinuous Galerkin method for elliptic problems Computer Aided Civil and Infrastructure Engineering 28 238-252
[9]  
Bassi F(2002)An a posteriori error estimate for the local discontinuous Galerkin method SIAM J. Sci. Comp. 24 524-547
[10]  
Rebay S(2007)An adaptive strategy for the local discontinuous Galerkin method applied to porous media problems Finite Elem. Anal. Des. 43 757-770