A Minkowski Theorem for Quasicrystals

被引:0
作者
Pierre-Antoine Guihéneuf
Émilien Joly
机构
[1] Universidade Federal Fluminense,Instituto de Matemática e Estatística
[2] IMJ-PRG,Modal’X, Bureau E08, Bâtiment G
[3] 4 place Jussieu,undefined
[4] case 247,undefined
[5] Université Paris Ouest,undefined
来源
Discrete & Computational Geometry | 2017年 / 58卷
关键词
Minkowski theorem; Quasicrystals; Diophantine approximation; Discretization; 05A20; 11B05; 52C23; 11H06;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to generalize Minkowski’s theorem. This theorem is usually stated for a centrally symmetric convex body and a lattice both included in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {R}^n$$\end{document}. In some situations, one may replace the lattice by a more general set for which a notion of density exists. In this paper, we prove a Minkowski theorem for quasicrystals, which bounds from below the frequency of differences appearing in the quasicrystal and belonging to a centrally symmetric convex body. The last part of the paper is devoted to quite natural applications of this theorem to Diophantine approximation and to discretization of linear maps.
引用
收藏
页码:596 / 613
页数:17
相关论文
共 6 条
[1]  
Henk M(2002)Successive minima and lattice points Rend. Circ. Mat. Palermo (2) Suppl. 70 377-384
[2]  
Lagarias JC(1996)Meyer’s concept of quasicrystal and quasiregular sets Commun. Math. Phys. 179 365-376
[3]  
Marklof J(2015)Visibility and directions in quasicrystals Int. Math. Res. Not. IMRN 2015 6588-6617
[4]  
Strömbergsson A(2012)Quasicrystals, almost periodic patterns, mean-periodic functions and irregular sampling Afr. Diaspora J. Math. 13 1-45
[5]  
Meyer Y(2002)Uniform distribution in model sets Can. Math. Bull. 45 123-130
[6]  
Moody RV(undefined)undefined undefined undefined undefined-undefined