Further Results for Starlike Functions Related with Booth Lemniscate

被引:0
作者
Rahim Kargar
Ali Ebadian
Lucyna Trojnar-Spelina
机构
[1] Islamic Azad University,Young Researchers and Elite Club, Ardabil Branch
[2] Urmia University,Department of Mathematics, Faculty of Science
[3] Rzeszów University of Technology,Department of Discrete Mathematics, Faculty of Mathematics and Applied Physics
来源
Iranian Journal of Science and Technology, Transactions A: Science | 2019年 / 43卷
关键词
Booth lemniscate; Radius of starlikeness; Starlike function; Convex function; Subordination; 30C45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we investigate an interesting subclass BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} (0≤α<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \alpha <1$$\end{document}) of starlike functions in the unit disc Δ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta$$\end{document}. The class BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {BS}(\alpha )$$\end{document} was introduced by Kargar et al. (Anal Math Phys, 2017. https://doi.org/10.1007/s13324-017-0187-3) which is strongly related to the Booth lemniscate. Some geometric properties of this class of analytic functions, including radius of starlikeness of order γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma$$\end{document} (0≤γ<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0\le \gamma <1$$\end{document}), the image of f({z:|z|<r})\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(\{z:|z|<r\})$$\end{document} when f∈BS(α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in \mathcal {BS}(\alpha )$$\end{document}, an special example and estimate of bounds for Re{f(z)/z}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{Re}\{f(z)/z\}$$\end{document}, are studied.
引用
收藏
页码:1235 / 1238
页数:3
相关论文
共 13 条
[1]  
Kargar R(2016)On subordination of some analytic functions Sib Math J 57 599-604
[2]  
Ebadian A(2017)On Booth lemniscate and starlike functions Anal Math Phys 2013 420-140
[3]  
Sokół J(2013)Hadamard product of analytic functions and some special regions and curves J Inequal Appl 32 135-502
[4]  
Kargar R(1985)Certain classes of starlike functions Mich Math J 33 499-undefined
[5]  
Ebadian A(1985)Subordination under convex univalent function Bull Pol Acad Sci Math 2013 370-undefined
[6]  
Sokół J(2013)Notes on analytic functions with a bounded positive real part J Inequal Appl undefined undefined-undefined
[7]  
Piejko K(undefined)undefined undefined undefined undefined-undefined
[8]  
Sokół J(undefined)undefined undefined undefined undefined-undefined
[9]  
Robertson MS(undefined)undefined undefined undefined undefined-undefined
[10]  
Ruscheweyh St(undefined)undefined undefined undefined undefined-undefined