Let Γ be a finite digraph and let G be a subgroup of the automorphism group of Γ. A directed cycle [inline-graphic not available: see fulltext] of Γ is called G-consistent whenever there is an element of G whose restriction to [inline-graphic not available: see fulltext] is the 1-step rotation of [inline-graphic not available: see fulltext]. Consistent cycles in finite arc-transitive graphs were introduced by J. H. Conway in his public lectures at the Second British Combinatorial Conference in 1971. He observed that the number of G-orbits of G-consistent cycles of an arc-transitive group G is precisely one less than the valency of the graph. In this paper, we give a detailed proof of this result in a more general setting of arbitrary groups of automorphisms of graphs and digraphs.
机构:
Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of SciencesInstitute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Makhnev A.A.
Paduchikh D.V.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of SciencesInstitute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
机构:
Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of SciencesInstitute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences
Makhnev A.A.
Paduchikh D.V.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of SciencesInstitute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences