Variable selection in function-on-scalar single-index model via the alternating direction method of multipliers

被引:0
|
作者
Rahul Ghosal
Arnab Maity
机构
[1] University of South Carolina,Division of Biostatistics
[2] North Carolina State University,Department of Statistics
来源
TEST | 2024年 / 33卷
关键词
Alternating direction method of multipliers; Single index model; Functional data analysis; Variable selection; Function-on-scalar regression; 62R10;
D O I
暂无
中图分类号
学科分类号
摘要
We develop a new method for variable selection in a function-on-scalar single-index model. The proposed method goes beyond existing additive function-on-scalar regression framework and models dynamic effects of multiple scalar covariates via a varying coefficient single-index model. The unknown bivariate link function is modeled with splines. A computationally efficient alternating direction method of multipliers-based algorithm is used for simultaneous selection of the influential covariates and estimation of the single-index coefficients and the link function. The proposed method provides a flexible framework for variable selection in function-on-scalar regression, particularly in the presence of nonlinear and interaction effects. Numerical analysis using simulations illustrates satisfactory finite sample performance of the proposed method in terms of selection and estimation accuracy. An application is demonstrated on the CD4+ cell counts data. Software implementation of the proposed method is provided in R.
引用
收藏
页码:106 / 126
页数:20
相关论文
共 50 条
  • [1] Variable selection in function-on-scalar single-index model via the alternating direction method of multipliers
    Ghosal, Rahul
    Maity, Arnab
    TEST, 2024, 33 (01) : 106 - 126
  • [2] Variable selection and direction estimation for single-index models via DC-TGDR method
    Zhong, Wei
    Liu, Xi
    Ma, Shuangge
    STATISTICS AND ITS INTERFACE, 2018, 11 (01) : 169 - 181
  • [3] Variable selection for the single-index model
    Kong, Efang
    Xia, Yingcun
    BIOMETRIKA, 2007, 94 (01) : 217 - 229
  • [4] Variable selection in function-on-scalar regression
    Chen, Yakuan
    Goldsmith, Jeff
    Ogden, R. Todd
    STAT, 2016, 5 (01): : 88 - 101
  • [5] Confounder adjustment in single index function-on-scalar regression model
    Ding, Shengxian
    Zhou, Xingcai
    Lin, Jinguan
    Liu, Rongjie
    Huang, Chao
    ELECTRONIC JOURNAL OF STATISTICS, 2024, 18 (02): : 5679 - 5714
  • [6] Variable selection in nonlinear function-on-scalar regression
    Ghosal, Rahul
    Maity, Arnab
    BIOMETRICS, 2023, 79 (01) : 292 - 303
  • [7] Robust estimation and variable selection for function-on-scalar regression
    Cai, Xiong
    Xue, Liugen
    Ca, Jiguo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 162 - 179
  • [8] Variable Selection for the Partial Linear Single-Index Model
    Wu WANG
    Zhong-yi ZHU
    Acta Mathematicae Applicatae Sinica, 2017, 33 (02) : 373 - 388
  • [9] Variable selection for the partial linear single-index model
    Wu Wang
    Zhong-yi Zhu
    Acta Mathematicae Applicatae Sinica, English Series, 2017, 33 : 373 - 388
  • [10] Variable selection for the partial linear single-index model
    Wang, Wu
    Zhu, Zhong-yi
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2017, 33 (02): : 373 - 388