Individual upper semicontinuity and subgame perfect ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-equilibria in games with almost perfect information

被引:0
作者
János Flesch
P. Jean-Jacques Herings
Jasmine Maes
Arkadi Predtetchinski
机构
[1] Maastricht University,Department of Quantitative Economics
[2] Maastricht University,Department of Economics
关键词
Almost perfect information; Infinite game; Subgame perfect ; -equilibrium; Individual upper semicontinuity; C62; C65; C72; C73;
D O I
10.1007/s00199-019-01201-y
中图分类号
学科分类号
摘要
We study games with almost perfect information and an infinite time horizon. In such games, at each stage, the players simultaneously choose actions from finite action sets, knowing the actions chosen at all previous stages. The payoff of each player is a function of all actions chosen during the game. We define and examine the new condition of individual upper semicontinuity on the payoff functions, which is weaker than upper semicontinuity. We prove that a game with individual upper semicontinuous payoff functions admits a subgame perfect ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-equilibrium for every ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}, in eventually pure strategy profiles.
引用
收藏
页码:695 / 719
页数:24
相关论文
共 35 条
  • [21] Fudenberg D(undefined)undefined undefined undefined undefined-undefined
  • [22] Levine D(undefined)undefined undefined undefined undefined-undefined
  • [23] Harris C(undefined)undefined undefined undefined undefined-undefined
  • [24] Reny P(undefined)undefined undefined undefined undefined-undefined
  • [25] Robson A(undefined)undefined undefined undefined undefined-undefined
  • [26] Maitra AP(undefined)undefined undefined undefined undefined-undefined
  • [27] Sudderth WD(undefined)undefined undefined undefined undefined-undefined
  • [28] Prokopovych P(undefined)undefined undefined undefined undefined-undefined
  • [29] Yannelis NC(undefined)undefined undefined undefined undefined-undefined
  • [30] Purves RA(undefined)undefined undefined undefined undefined-undefined