Individual upper semicontinuity and subgame perfect ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-equilibria in games with almost perfect information

被引:0
作者
János Flesch
P. Jean-Jacques Herings
Jasmine Maes
Arkadi Predtetchinski
机构
[1] Maastricht University,Department of Quantitative Economics
[2] Maastricht University,Department of Economics
关键词
Almost perfect information; Infinite game; Subgame perfect ; -equilibrium; Individual upper semicontinuity; C62; C65; C72; C73;
D O I
10.1007/s00199-019-01201-y
中图分类号
学科分类号
摘要
We study games with almost perfect information and an infinite time horizon. In such games, at each stage, the players simultaneously choose actions from finite action sets, knowing the actions chosen at all previous stages. The payoff of each player is a function of all actions chosen during the game. We define and examine the new condition of individual upper semicontinuity on the payoff functions, which is weaker than upper semicontinuity. We prove that a game with individual upper semicontinuous payoff functions admits a subgame perfect ϵ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon $$\end{document}-equilibrium for every ϵ>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}, in eventually pure strategy profiles.
引用
收藏
页码:695 / 719
页数:24
相关论文
共 35 条
  • [1] Alós-Ferrer C(2017)Characterizing existence of equilibrium for large extensive form games: a necessity result Econ. Theory 63 407-430
  • [2] Ritzberger K(2016)Subgame-perfect Math. Oper. Res. 41 1208-1221
  • [3] Flesch J(1997)-equilibria in perfect information games with common preferences at the limit Int. J. Game Theory 26 303-314
  • [4] Predtetchinski A(2010)Cyclic Markov equilibria in stochastic games Math. Oper. Res. 35 742-755
  • [5] Flesch J(2014)Perfect-information games with lower-semicontinuous payoffs Int. J. Game Theory 43 945-951
  • [6] Thuijsman F(1983)Non-existence of subgame-perfect J. Econ. Theory 31 251-268
  • [7] Vrieze K(1995)-equilibrium in perfect information games with infinite horizon Econometrica 63 507-544
  • [8] Flesch J(2007)Subgame-perfect equilibria of finite and infinite horizon games Math. Oper. Res. 32 711-722
  • [9] Kuipers J(2017)The existence of subgame-perfect equilibrium in continuous games with almost perfect information: a case for public randomization J. Math. Econ. 70 147-153
  • [10] Mashiah-Yaakovi A(2011)Subgame-perfect equilibria for stochastic games Math. Oper. Res. 36 468-473