Determination of Nuclear Charge Distributions of Fission Fragments from 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U (nth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_\mathrm{th}$$\end{document}, f) with Calorimetric Low Temperature Detectors

被引:0
作者
P. Grabitz
V. Andrianov
S. Bishop
A. Blanc
S. Dubey
A. Echler
P. Egelhof
H. Faust
F. Gönnenwein
J. M. Gomez-Guzman
U. Köster
S. Kraft-Bermuth
M. Mutterer
P. Scholz
S. Stolte
机构
[1] GSI Helmholtz Center for Heavy Ion Research,Lomonosov Moscow State University
[2] Johannes Gutenberg University,undefined
[3] Institute of Nuclear Physics,undefined
[4] Justus Liebig University,undefined
[5] Technical University,undefined
[6] Institut Laue-Langevin,undefined
[7] Eberhard Karls University,undefined
关键词
Low temperature detectors; Heavy ions; Thermal neutron-induced fission; Fission fragments; LOHENGRIN recoil separator; ILL Grenoble;
D O I
10.1007/s10909-016-1566-0
中图分类号
学科分类号
摘要
Calorimetric low temperature detectors (CLTD’s) for heavy-ion detection have been combined with the LOHENGRIN recoil separator at the ILL Grenoble for the determination of nuclear charge distributions of fission fragments produced by thermal neutron-induced fission of 235\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{235}$$\end{document}U. The LOHENGRIN spectrometer separates fission fragments according to their mass-to-ionic-charge ratio and their kinetic energy, but has no selectivity with respect to nuclear charges Z. For the separation of the nuclear charges, one can exploit the nuclear charge-dependent energy loss of the fragments passing through an energy degrader foil (absorber method). This separation requires detector systems with high energy resolution and negligible pulse height defect, as well as degrader foils which are optimized with respect to thickness, homogeneity, and energy loss straggling. In the present, contribution results of test measurements at the Maier Leibnitz tandem accelerator facility in Munich with 109\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{109}$$\end{document}Ag and 127\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{127}$$\end{document}I beams with the aim to determine the most suitable degrader material, as well as measurements at the Institut Laue–Langevin will be presented. These include a systematic study of the quality of Z-separation of fission fragments in the mass range 82≤A≤132\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$82\le A \le 132$$\end{document} and a systematic measurement of 92\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{92}$$\end{document}Rb fission yields, as well as investigations of fission yields toward the symmetry region.
引用
收藏
页码:944 / 951
页数:7
相关论文
共 62 条
  • [1] Kraft-Bermuth S(2009)undefined Rev. Sci. Instrum. 80 103304-undefined
  • [2] Egelhof P(2005)undefined Top. Appl. Phys. 99 469-undefined
  • [3] Kraft-Bermuth S(2014)undefined J. Low Temp. Phys. 176 1033-undefined
  • [4] Echler A(1977)undefined Kerntechnik 19 374-undefined
  • [5] Egelhof P(1979)undefined Nucl. Instrum. Methods 164 435-undefined
  • [6] Grabitz P(2015)undefined Phys. Rev. C 91 011301(R)-undefined
  • [7] Kettunen H(1988)undefined Nucl. Phys. A 487 1-undefined
  • [8] Kraft-Bermuth S(1974)undefined Nucl. Phys. A 274 74-undefined
  • [9] Müller K(1974)undefined Phys. Lett. B 53 45-undefined
  • [10] Rossi M(undefined)undefined undefined undefined undefined-undefined