On the multiplicity of non radial solutions for singular elliptic equations

被引:0
作者
Bekkouche N. [1 ]
Daoudi-Merzagui N. [1 ]
Hellal M. [1 ]
机构
[1] Department of Mathematics, University of Tlemcen, Tlemcen
关键词
Minimization with constraints; Periodic solution; Singular quasilinear equations;
D O I
10.1007/s13370-016-0456-6
中图分类号
学科分类号
摘要
The main goal of this work is to analyze the existence and the multiplicity of non radial solutions for a Dirichlet problem associated to an elliptic singular partial differential equation. Our approach is based on a variational method. © 2016, African Mathematical Union and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:407 / 415
页数:8
相关论文
共 40 条
  • [11] Castro A., Finan M.B., Existence of many positive nonradial solutions for a superlinear Dirichlet problem on thin annuli, Nonlinear Differ. Equ. Electron. J. Differ. Equ. Conf, 5, pp. 21-31, (2000)
  • [12] Chen J., Exact local behavior of positive solutions for a semilinear elliptic equation with Hardy term, Proc. Am. Math. Soc, 132, pp. 3225-3229, (2004)
  • [13] Chen J., Multiple positive solutions for a class of nonlinear elliptic equations, J Math. Anal. Appl, 295, pp. 341-354, (2004)
  • [14] Dancer E.N., On the Dirichlet problem for weakly nonlinear elliptic partial differential equations, Proc. Roy. Soc, 76, pp. 283-300, (1977)
  • [15] Drabek P., Kufner A., Nicolosi F., Quasilinear elliptic equations with degenerations and singularities. Gruyter Ser, Nonlinear Anal, (1997)
  • [16] Fabes E., Jerison D., Kenig C., The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble), 32, pp. 151-182, (1982)
  • [17] Fabes E., Kenig C., Serapioni R., The local regularity of solutions of degenerate elliptic equations, Commun. P.D.E, 7, pp. 77-116, (1982)
  • [18] Faraci F., Livrea R., Bifurcation theorems for nonlinear problems with lack of compactness, Ann. Polon. Math, 82, pp. 77-85, (2003)
  • [19] Ferrero A., Gazzola F., Existence of solutions for singular critical growth semilinear elliptic equations, J. Differ. Equ, 177, pp. 494-522, (2001)
  • [20] Garcia Azorero J.P., Peral Alonso I., Hardy inequalities and some critical elliptic and parabolic problems, J. Differ. Equ, 144, pp. 441-476, (1998)