On the multiplicity of non radial solutions for singular elliptic equations

被引:0
作者
Bekkouche N. [1 ]
Daoudi-Merzagui N. [1 ]
Hellal M. [1 ]
机构
[1] Department of Mathematics, University of Tlemcen, Tlemcen
关键词
Minimization with constraints; Periodic solution; Singular quasilinear equations;
D O I
10.1007/s13370-016-0456-6
中图分类号
学科分类号
摘要
The main goal of this work is to analyze the existence and the multiplicity of non radial solutions for a Dirichlet problem associated to an elliptic singular partial differential equation. Our approach is based on a variational method. © 2016, African Mathematical Union and Springer-Verlag Berlin Heidelberg.
引用
收藏
页码:407 / 415
页数:8
相关论文
共 40 条
  • [1] Aduen H., Castro A., Infinitely many non radial solutions to superlinear Dirichlet problem, Proc. Am. Math. Soc, 131, pp. 835-843, (2002)
  • [2] Alessio F., Dambrosio W., Multiple solutions to a Dirichlet problem on bounded symmetric domains, J. Math. Anal. Appl, 235, pp. 217-226, (1999)
  • [3] Bartsch T., Willem M., Infinitely many nonradial solutions of a Euclidean scalar field equation, J. Funct. Anal, 117, pp. 447-460, (1993)
  • [4] Batkam C.J., Radial and nonradial solutions of a strongly indefinite elliptic system on R<sup>N</sup> , Afr. Mat, 26, pp. 65-75, (2015)
  • [5] Ben Mabrouk A., Ben Mohamed M., Nonradial solutions of a mixed concave-convex elliptic problem, J. Partial Differ. Equ, 24, pp. 313-323, (2011)
  • [6] Bonanno G., Some remarks on a three critical points theorem, Nonlinear Anal, 54, pp. 651-665, (2003)
  • [7] Brezis H., Analyse Fonctionelle, (1983)
  • [8] Builter G.J., Rapid oscillation non extendability on the existence of periodic solution to second order nonlinear ordinary differential equations, J. Differ. Equ, 22, pp. 467-477, (1976)
  • [9] Butler G.J., Periodic solutions of sublinear second order differential equations, J. Math. Anal. Appl, 62, pp. 676-690, (1978)
  • [10] Castro A., Kurepa A., Infinitely many radially symmetric solutions to a superlinear Dirichlet problem in a ball, Proc. Am. Math. Soc, 101, pp. 57-64, (1987)