Circulant preconditioners for a kind of spatial fractional diffusion equations

被引:0
作者
Zhi-Wei Fang
Michael K. Ng
Hai-Wei Sun
机构
[1] Foshan University,School of Mathematics and Big Data
[2] Hong Kong Baptist University,Department of Mathematics
[3] University of Macau,Department of Mathematics
来源
Numerical Algorithms | 2019年 / 82卷
关键词
Fractional diffusion equation; Toeplitz matrix; Circulant preconditioner; Fast Fourier transform; Krylov subspace methods; 35R05; 65F08; 65F10; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, circulant preconditioners are studied for discretized matrices arising from finite difference schemes for a kind of spatial fractional diffusion equations. The fractional differential operator is comprised of left-sided and right-sided derivatives with order in (12,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\frac {1}{2},1)$\end{document}. The resulting discretized matrices preserve Toeplitz-like structure and hence their matrix-vector multiplications can be computed efficiently by the fast Fourier transform. Theoretically, the spectra of the circulant preconditioned matrices are shown to be clustered around 1 under some conditions. Numerical experiments are presented to demonstrate that the preconditioning technique is very efficient.
引用
收藏
页码:729 / 747
页数:18
相关论文
共 50 条
[31]   Multigrid method for fractional diffusion equations [J].
Pang, Hong-Kui ;
Sun, Hai-Wei .
JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (02) :693-703
[32]   Circulant preconditioning technique for barrier options pricing under fractional diffusion models [J].
Wang, Wenfei ;
Chen, Xu ;
Ding, Deng ;
Lei, Siu-Long .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (12) :2596-2614
[33]   Fast solution methods for space-fractional diffusion equations [J].
Wang, Hong ;
Du, Ning .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 :376-383
[34]   Fast solution algorithms for exponentially tempered fractional diffusion equations [J].
Lei, Siu-Long ;
Fan, Daoying ;
Chen, Xu .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (04) :1301-1323
[35]   Efficient ADI schemes and preconditioning for a class of high-dimensional spatial fractional diffusion equations with variable diffusion coefficients [J].
Gan, Di ;
Zhang, Guo-Feng .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 423
[36]   Generalized circulant Strang-type preconditioners [J].
Noschese, Silvia ;
Reichel, Lothar .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (01) :3-17
[37]   Circulant preconditioners from B-splines [J].
Chan, RH ;
Tso, TM ;
Sun, HW .
ADVANCED SIGNAL PROCESSING: ALGORITHMS, ARCHITECTURES, AND IMPLEMENTATIONS VII, 1997, 3162 :338-347
[38]   The best circulant preconditioners for Hermitian Toeplitz systems [J].
Chan, RH ;
Yip, AM ;
Ng, MK .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (03) :876-896
[39]   Banded Preconditioners for Two-Sided Space Variable-Order Fractional Diffusion Equations with a Nonlinear Source Term [J].
Wang, Qiu-Ya ;
Lin, Fu-Rong .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2024,
[40]   Preconditioned Iterative Methods for Two-Dimensional Space-Fractional Diffusion Equations [J].
Jin, Xiao-Qing ;
Lin, Fu-Rong ;
Zhao, Zhi .
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2015, 18 (02) :469-488