Circulant preconditioners for a kind of spatial fractional diffusion equations

被引:0
作者
Zhi-Wei Fang
Michael K. Ng
Hai-Wei Sun
机构
[1] Foshan University,School of Mathematics and Big Data
[2] Hong Kong Baptist University,Department of Mathematics
[3] University of Macau,Department of Mathematics
来源
Numerical Algorithms | 2019年 / 82卷
关键词
Fractional diffusion equation; Toeplitz matrix; Circulant preconditioner; Fast Fourier transform; Krylov subspace methods; 35R05; 65F08; 65F10; 65M06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, circulant preconditioners are studied for discretized matrices arising from finite difference schemes for a kind of spatial fractional diffusion equations. The fractional differential operator is comprised of left-sided and right-sided derivatives with order in (12,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\frac {1}{2},1)$\end{document}. The resulting discretized matrices preserve Toeplitz-like structure and hence their matrix-vector multiplications can be computed efficiently by the fast Fourier transform. Theoretically, the spectra of the circulant preconditioned matrices are shown to be clustered around 1 under some conditions. Numerical experiments are presented to demonstrate that the preconditioning technique is very efficient.
引用
收藏
页码:729 / 747
页数:18
相关论文
共 50 条
[21]   A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations [J].
Huang, Xin ;
Fang, Zhi-Wei ;
Sun, Hai-Wei ;
Zhang, Chun-Hua .
LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16) :3081-3096
[22]   Genuine-optimal circulant preconditioners for Wiener-Hopf equations [J].
Lin, FR .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (06) :629-638
[23]   On single-step HSS iterative method with circulant preconditioner for fractional diffusion equations [J].
Mu-Zheng Zhu ;
Guo-Feng Zhang ;
Ya-E Qi .
Advances in Difference Equations, 2019
[24]   On single-step HSS iterative method with circulant preconditioner for fractional diffusion equations [J].
Zhu, Mu-Zheng ;
Zhang, Guo-Feng ;
Qi, Ya-E .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[25]   SOME ASPECTS OF CIRCULANT PRECONDITIONERS [J].
HUCKLE, T .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (03) :531-541
[26]   Kronecker product based preconditioners for boundary value method discretizations of space fractional diffusion equations [J].
Chen, Hao ;
Huang, Qiuyue .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 170 :316-331
[27]   Circulant preconditioned iterations for fractional diffusion equations based on Hermitian and skew-Hermitian splittings [J].
Bai, Yu-Qin ;
Huang, Ting-Zhu ;
Gu, Xian-Ming .
APPLIED MATHEMATICS LETTERS, 2015, 48 :14-22
[28]   Tensorized low-rank circulant preconditioners for multilevel Toeplitz linear systems from high-dimensional fractional Riesz equations [J].
Zhang, Lei ;
Zhang, Guo-Feng ;
Liang, Zhao-Zheng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 110 :64-76
[29]   CIRCULANT PRECONDITIONERS FOR COMPLEX TOEPLITZ MATRICES [J].
CHAN, RH ;
YEUNG, MC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1993, 30 (04) :1193-1207
[30]   CIRCULANT PRECONDITIONERS CONSTRUCTED FROM KERNELS [J].
CHAN, RH ;
YEUNG, MC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (04) :1093-1103