Infrared planar laser-induced fluorescence with a CW quantum-cascade laser for spatially resolved CO2 and gas properties

被引:0
作者
Christopher S. Goldenstein
Victor A. Miller
Ronald K. Hanson
机构
[1] Stanford University,High Temperature Gasdynamics Laboratory
来源
Applied Physics B | 2015年 / 120卷
关键词
Laser-induced fluorescence; Quantum-cascade laser; Infrared photophysics; CO;
D O I
暂无
中图分类号
学科分类号
摘要
The design and demonstration of a new infrared laser-induced fluorescence (IR-LIF) technique that enables spatially resolved measurements of CO2, temperature, and pressure, with potential for velocity, are presented. A continuous-wave, wavelength-tunable, quantum-cascade laser (QCL) near 4.3μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4.3\,\upmu \hbox {m}$$\end{document} with up to 120 mW was used to directly excite the asymmetric-stretch fundamental-vibration band of CO2 for approximately 200 to 105\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10^5$$\end{document} times more absorbance compared with previous IR-LIF techniques. This enabled LIF detection limits (signal-to-noise ratio of 1) of 20 and 70 ppm of CO2 in Ar and N2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbox {N}_2$$\end{document}, respectively, at 1 bar and 296 K in static-cell experiments. Simplified and detailed kinetic models for simulating the LIF signal as a function of gas properties are presented and enable quantitative, calibration-free, IR-LIF measurements of CO2 mole fraction within 1–8 % of known values at 0.5–1 bar. By scanning the laser across two absorption transitions and performing a multi-line Voigt fit to the LIF signal, measurements of temperature, pressure, and χCO2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi _{\hbox {CO}_2}$$\end{document} within 2 % of known values were obtained. LIF measurements of gas pressure at a repetition rate up to 200 Hz (in argon) are also presented. Planar-LIF (PLIF) was used to image steady and unsteady CO2–Ar jets at 330 frames per second with a spatial signal-to-noise ratio (SNR) up to 25, corresponding to a detection limit (SNR = 1) of 200 ppm with a projected pixel size of 40μm\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$40\,\upmu \hbox {m}$$\end{document}. The gas pressure was measured within 3±2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3 \pm 2$$\end{document} % of the known value (1 bar) at 5 Hz by scanning the QCL across the P(42) absorption transition and least-squares fitting a Voigt profile to the PLIF signal. Spatially resolved measurements of absolute CO2 mole fraction in a laminar jet are also presented.
引用
收藏
页码:185 / 199
页数:14
相关论文
共 105 条
  • [1] Miles RB(1978)Quantitative flow visualization in sodium vapor seeded hypersonic helium Appl. Phys. Lett. 32 317-319
  • [2] Udd E(1990)Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-induced fluorescence of OH Opt. Lett. 15 706-708
  • [3] Zimmermann M(2004)Measurements of the indium hyperfine structure in an atmospheric-pressure flame by use of diode-laser-induced fluorescence Opt. Lett. 29 827-829
  • [4] Chang AY(2011)Diode laser induced fluorescence for gas-phase diagnostics Z. Phys. Chem. 225 1343-1366
  • [5] Battles BE(1982)Quantitative visualization of combustion species in a plane Appl. Opt. 18 3225-3227
  • [6] Hanson RK(1982)Two-dimensional imaging of OH laser-induced fluorescence in a flame Opt. Lett. 8 382-384
  • [7] Hult J(1984)Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems Science 224 382-384
  • [8] Burns IS(2005)Development of high-spectral-resolution planar laser-induced fluorescence imaging diagnostics for high-speed gas flows Prog. Energy Combust. Sci. 31 75-121
  • [9] Kaminski CF(2008)Applications of quantitative laser sensors to kinetics, propulsion and practical energy systems AIAA J. 46 17-20
  • [10] Burns IS(2011)Planar laser-induced fluorescence imaging of carbon monoxide using vibrational (infrared) transitions Proc. Combust. Inst. 33 1-40