Raising and Lowering Operators for Orbital Angular Momentum Quantum Numbers

被引:0
作者
Q. H. Liu
D. M. Xun
L. Shan
机构
[1] Hunan University,School for Theoretical Physics, and Department of Applied Physics
来源
International Journal of Theoretical Physics | 2010年 / 49卷
关键词
Angular momentum; Raising and lowering operators; Quantum numbers;
D O I
暂无
中图分类号
学科分类号
摘要
Two vector operators aimed at shifting orbital angular momentum quantum number l successfully constructed based on the primary form proposed by Prof. X.L. Ka in 2001. The lowering operators can give the lowest angular momentum quantum numbers l for a given magnetic quantum number m in spherical harmonics |lm〉; and the state with minimum angular momentum quantum number in whole set of the spherical harmonics turns out to be |0,0〉. How to use the raising and lowering operators as acting on the state |0,0〉. to generate whole set of spherical harmonics is illustrated.
引用
收藏
页码:2164 / 2171
页数:7
相关论文
共 11 条
  • [1] Burkhardt C.E.(2004)Lenz vector operations on spherical hydrogen atom eigenfunctions Am. J. Phys. 72 1013-1016
  • [2] Leventhal J.J.(2002)Coherent states on spheres J. Math. Phys. 43 1211-1236
  • [3] Hall B.C.(2000)Quantum mechanics on a sphere and coherent states J. Phys. A 33 6035-6048
  • [4] Mitchell J.J.(1999)Nonlinear Lie algebra and ladder operators for orbital angular momentum J. Phys. A, Math. Gen. 32 2217-2224
  • [5] Kowalski K.(1999)Boson realization of nonlinear SO(3) algebra Phys. Lett. A 263 78-82
  • [6] Rembielinski J.(1980)The orthonormal basis for symmetric irreducible representations of O(5) × SU(1, 1) and its application to the interacting boson model Nucl. Phys. A 340 76-92
  • [7] Ni Z.X.(undefined)undefined undefined undefined undefined-undefined
  • [8] Ruan D.(undefined)undefined undefined undefined undefined-undefined
  • [9] Ruan W.(undefined)undefined undefined undefined undefined-undefined
  • [10] Szpikowski S.(undefined)undefined undefined undefined undefined-undefined