Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods

被引:0
|
作者
Xinyuan Wu
Bin Wang
Jianlin Xia
机构
[1] Nanjing University,Department of Mathematics
[2] Nanjing University,State Key Laboratory for Novel Software Technology
[3] Purdue University,Department of Mathematics
来源
BIT Numerical Mathematics | 2012年 / 52卷
关键词
Exponential fitting; MEFMRKN methods; Symplecticity conditions; ERKN integrators; Oscillatory systems; 65L05; 65L06; 65M20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with multidimensional exponential fitting modified Runge-Kutta-Nyström (MEFMRKN) methods for the system of oscillatory second-order differential equations q″(t)+Mq(t)=f(q(t)), where M is a d×d symmetric and positive semi-definite matrix and f(q) is the negative gradient of a potential scalar U(q). We formulate MEFMRKN methods and show clearly the relationship between MEFMRKN methods and multidimensional extended Runge-Kutta-Nyström (ERKN) methods proposed by Wu et al. (Comput. Phys. Comm. 181:1955–1962, 2010). Taking into account the fact that the oscillatory system is a separable Hamiltonian system with Hamiltonian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H(p,q)=\frac{1}{2}p^{T}p+ \frac{1}{2}q^{T}Mq+U(q)$\end{document}, we derive the symplecticity conditions for the MEFMRKN methods. Two explicit symplectic MEFMRKN methods are proposed. Numerical experiments accompanied demonstrate that our explicit symplectic MEFMRKN methods are more efficient than some well-known numerical methods appeared in the scientific literature.
引用
收藏
页码:773 / 795
页数:22
相关论文
共 50 条
  • [21] A singly diagonally implicit Runge-Kutta-Nyström method for solving oscillatory problems
    Senu, N.
    Suleiman, M.
    Ismail, F.
    Othman, M.
    IAENG International Journal of Applied Mathematics, 2012, 41 (02) : 155 - 161
  • [22] Mono-Implicit Runge-Kutta-Nyström Methods with Application to Boundary Value Ordinary Differential Equations
    P. H. Muir
    M. Adams
    BIT Numerical Mathematics, 2001, 41 : 776 - 799
  • [23] 一类对角隐式辛Runge-Kutta-Nystrm方法
    文立平
    湘潭大学自然科学学报, 1998, (02) : 3 - 6
  • [24] A 5(4) embedded pair of explicit trigonometrically-fitted Runge-Kutta-Nyström methods for the numerical solution of oscillatory initial value problems
    Demba M.A.
    Senu N.
    Ismail F.
    Mathematical and Computational Applications, 2016, 21 (04)
  • [25] Nine-Stage Runge-Kutta-Nyström Pairs Sharing Orders Eight and Six
    Alharbi, Hadeel
    Yadav, Kusum
    Ramadan, Rabie A.
    Jerbi, Houssem
    Simos, Theodore E.
    Tsitouras, Charalampos
    MATHEMATICS, 2024, 12 (02)
  • [26] The generalization of diagonally implicit Runge-Kutta-Nyström method with controllable numerical dissipation for structural dynamics
    Wang, Yazhou
    Xue, Xiaodai
    Wang, Tao
    Xie, Ningning
    Jia, Hongjin
    Hu, Zhubing
    Tamma, Kumar
    NONLINEAR DYNAMICS, 2024, 112 (01) : 525 - 559
  • [27] Energy-preserving trigonometrically fitted continuous stage Runge-Kutta-Nyström methods for oscillatory Hamiltonian systems
    Jiyong Li
    Yachao Gao
    Numerical Algorithms, 2019, 81 : 1379 - 1401
  • [28] A class of implicit symmetric symplectic and exponentially fitted Runge–Kutta–Nyström methods for solving oscillatory problems
    Huai Yuan Zhai
    Wen Juan Zhai
    Bing Zhen Chen
    Advances in Difference Equations, 2018
  • [29] Adaptive multi-step Runge-Kutta-Nystr?m methods for general second-order ordinary differential equations
    Abdulsalam, Athraa
    Senu, Norazak
    Majid, Zanariah Abdul
    Long, Nik Mohd Asri Nik
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 421
  • [30] Stable Runge–Kutta–Nyström methods for dissipative stiff problems
    I. Alonso-Mallo
    B. Cano
    M. J. Moreta
    Numerical Algorithms, 2006, 42 : 193 - 203