Explicit symplectic multidimensional exponential fitting modified Runge-Kutta-Nyström methods

被引:0
|
作者
Xinyuan Wu
Bin Wang
Jianlin Xia
机构
[1] Nanjing University,Department of Mathematics
[2] Nanjing University,State Key Laboratory for Novel Software Technology
[3] Purdue University,Department of Mathematics
来源
BIT Numerical Mathematics | 2012年 / 52卷
关键词
Exponential fitting; MEFMRKN methods; Symplecticity conditions; ERKN integrators; Oscillatory systems; 65L05; 65L06; 65M20;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with multidimensional exponential fitting modified Runge-Kutta-Nyström (MEFMRKN) methods for the system of oscillatory second-order differential equations q″(t)+Mq(t)=f(q(t)), where M is a d×d symmetric and positive semi-definite matrix and f(q) is the negative gradient of a potential scalar U(q). We formulate MEFMRKN methods and show clearly the relationship between MEFMRKN methods and multidimensional extended Runge-Kutta-Nyström (ERKN) methods proposed by Wu et al. (Comput. Phys. Comm. 181:1955–1962, 2010). Taking into account the fact that the oscillatory system is a separable Hamiltonian system with Hamiltonian \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H(p,q)=\frac{1}{2}p^{T}p+ \frac{1}{2}q^{T}Mq+U(q)$\end{document}, we derive the symplecticity conditions for the MEFMRKN methods. Two explicit symplectic MEFMRKN methods are proposed. Numerical experiments accompanied demonstrate that our explicit symplectic MEFMRKN methods are more efficient than some well-known numerical methods appeared in the scientific literature.
引用
收藏
页码:773 / 795
页数:22
相关论文
共 50 条